

Chromatic Imaging and Modeling of l Puppis: Unveiling Disc Asymmetries in B[e] Stars with VLTI/MATISSE

B[e] phenomenon in a nutshell

B[e] designation [Allen & Swings 1976]

Peculiar class of objects defined by physical & spectral characteristics

NOT a stellar evolutionary stage

 \Leftrightarrow Edge-on cut of a B[e] system

Open questions

April 29th 2025

How & where do these discs form? How long are their lifetimes? What is its connection with the stellar 50% of B[e] class consists of FS CMa type evolution of massive stars & the impact on the galaxy & 30% are binary systems [Varga+2019] scale? Which interaction between gas & dust?

Total ~120 objects [Chen+2021]

Study framework

Groups with mass-loss rate & dust formation mechanisms + evolutionary stage still obscure

Science case

From B[e] heterogenous population [Lamers+1998], focus on SG & FS CMa

Circumstellar rings

can result from decretion/ejection/outbursts mechanism or binary interaction

Scope

Understand and constrain the overall geometry + dynamic + properties that generate & sustain their circumstellar material

© Miroshnichenko 2017

How to shed light on B[e] discs?

Density, chemical composition & velocity structure of equatorial disc

→ high spectral resolution

Stellar distance & bolometric luminosity

→ accurate astrometric solutions

Size, relative flux & structures' position of stellar surface/disc components \rightarrow high spatial angular resolution

Methodology

For the sake of the global context, aim at constraining CSE physical parameters from a specific B[e] star, l Puppis

- → Conduct VLTI/MATISSE observation campaigns
- → Constrain circumstellar environment geometry parameters with toymodels
- → Produce image reconstruction with MiRA

Collaborators:

J. Drevon, F. Millour, A. Meilland, A. Domiciano de Souza, C. Paladini, J. H. Leftley, P. Stee

l Puppis system

Other appellations: 3 Pup = HD 62623

Observability

RA 07h:43m:48.5s

DEC -28°:57':17.4"

Southern Hemisphere Between November – April

Other appellations: 3 Pup = HD 62623

= HR 2996

ID card

Brightest B[e] star known → 4 mag

 $d \sim 631 pc [GAIA DR2]$

Binary system

Keplerian motion for dust & gas discs

Stellar composition

Primary → A[e]-type @ pre-RSG stage [Miroshnichenko+2020]

Secondary → Dwarf companion based on Radial Velocity [Plets+ 1995]

Might have undergone a mass transfer exchange according to Rensbergen+2008 model

Uncertain nature of the host star

Suggests to move from sgB[e] group to FS CMa group [Miroshnichenko+2020]

l Puppis illustrative sketch

© M. Abello+ in prep

Spectroscopy results summarized from:

Millour+2011, Kraus+2015, Aret+2016, Maravelias+2018, Miroshnichenko+2020, Aidelman+2023

/!\ Spectroscopic binary → not resolved by IR interferometers

Dwarf companion

Supergiant star			
Spectral type	A2.7Ib		
Orbital period P_{orb}	$137.4 \pm 0.1 \text{ days}$		
Radius R*	0.25 ± 0.03 A.U.		
	$0.40\pm$ mas		
Temperature $T_{\rm eff,*}$	$8500 \pm 500~K$		
Mass M_*	$8.8\pm0.5~M_{\odot}$		
Luminosity $log(L_*/L_{\odot})$	4.1 ± 0.1		
Companion star			
Separation	1.11 ± 0.03 A.U.		
	$1.7 \pm \text{mas}$		
Radius $R_{\rm c}$	~ 0.0014 A.U.		
Temperature $T_{\rm eff,c}$	$\sim 50000~K$		
Mass $M_{\rm c}$	$0.75 \pm 0.25 \ M_{\odot}$		

© M. Abello+ in prep

VLTI/MATISSE observations

Step 0: MATISSE LM-data in low-spectral resolution

Step 1: Geometric model fitting

Disc geometrical	Best fitted values
parameters	MCMC sampling
	star + gas disc ~ 7.9
Flux ratio [%]	Inner dust ring ~ 36.2
	hot dust blob ~ 55.9
Dust ring major axis [mas]	$r_{inner} \sim 6.77 \mid r_{outer} \sim 24.4$
Dust ring position angle [°]	14.9°
Ring axis ratio	e ~1 . 52
Inclination angle [°]	i ∼ 48.9
Skewness	0.11
Skewness position angle	-40.7°
Hot blob position [mas]	$lpha \sim 7.04 \mid \delta \sim$ -8.7
Hot blob size [mas]	FWHM ∼16

Step 2: Synthetic image from MiRA software

MiRA [Thiébaut 2018] convolved image

$$(\chi_{\rm r}^2 \sim 5.6)$$

Identical image using either:

- geometric 3-component model or Dirac distribution as the starting image
- Using either the hyperbolic or the compactness regularization function

© M. Abello+ in prep

Step 3: Comparison l Puppis data vs simulated data

Chromatic multi-component model fitting → oimodeler/MCMC sampling

Image reconstruction techniques
→ MiRA algorithm

Consistency between two different fitting methods

- → Intriguing asymmetry at short spatial frequencies can be described in the direct space as a shifted and extended component in the dusty inner rim
- → Strong evidence for inhomogeneous dust shell

© M. Abello+ in prep

Step 4: L-curve inferred from the 3360 image grid

April 29th 2025

Step 5: Resampling the selected robust subset

Resample to the same resolution

April 29th 2025

Step 6: Averaged images

Step 7: Comparison with data

Spectral	Comparison image/data			
band	$\chi^2_{ m global}$	$\chi^2_{\rm vis}$	$\chi^2_{ m clos}$	
L	7.6	8.4	6.5	
M	5.6	6.9	3.5	
N	2.2	3.3	0.6	

© M. Abello+ in prep

16

Step 8: Verification artefacts VS physical structures

Sigma based confidence map

© M. Abello+ in prep

Low Frequency Filter [Millour+ 2012]

Colour-composite image LMN bands

© M. Abello+ in prep

VLTI 1st Gen results

l Pup described by a 3-component model

©Meilland+ 2010

Physical component	Relative flux	Geometric model	Resolved
Star + Gas disc	1%	Point source	_
Inner ring	40%	Elliptical skewed ring	X
Dust disc	59%	Extended centred background	X

Radiative transfer MC3D code + SIMECA modelisation

Synthetic images

5 AU

© Meilland+ 2010

VLTI/MIDI data N band model (12μm)

→ Dust thermal emission

Conclusion —
 stars surrounded by a dense axi-symmetric dusty and gaseous disc

- Ring inhomogeneity noticed in 2014 by Maravelias+2018 via spectroscopy &in McDonald spectrum taken in 2008.
- Are there jets/outflowing material from the companion? Or rather be the result of dust trapping (vortex)?
- Origin/nature of the blob: may result from clump formation due to the condensation of dust grains OR from binary interaction where the companion evaporates some of the dust located in the inner ring inhomogeneously.

Work perspectives

- Check if there is any temporal variability in the circumstellar material → binary effects or not? periodicity?
- Geometric modelling to finish to publish the paper.
- Submit ESO proposal wishing for GRAVITY & PIONIER data of l Pup \rightarrow access to gas dynamic (K,H-bands).
- Interested in the CHARA fast snapshot imaging program \rightarrow extend to northern B[e] stars + HK imaging

Thanks for your attention

If you want to collaborate, reach me at margaux.abello@oca.eu