The Angular Diameter of λ Boötis

David R. Ciardi Third Annual **CHARA** Science Meeting 16 March 2007

Acknowledgements

- Gerard van Belle & Andy Boden
- CHARA Staff

GeorgiaStateUniversit

- PJ and Nils for helping with the observations
- Hal and Theo for granting some extra nights

Observatoire

LESIA

The λ Boo Class

- λ Boo (A3V) is the prototype
 - About 50 stars (2% of all known A-stars)
- Chemically peculiar A/F V stars
 - C, N, O, S solar abundances
 - Mg, Ca, Fe highly depleted ($[M/H] \sim -2$)
- Depletion may be related to gas/dust separations in disks
 - Strong infrared excess
 - Vega-like Phenomenon Young (MYr)
 - Evolved stars with mass loss Old (GYr)
 - Ages determined from HRD
 - Solar Metallcity tracks only
 - No consideration of other metallicties

bservatoire

LESIA

- Ages: 10 1000 Myr
- Alternative hypothesis
 - Binary stars of similar spectral types
 - Blended spectra

Georgia State University

• Been a general acceptance of the stars being young and related to the Vega-likes

CHARA Array Observations

- Predicted angular size: ~0.5 mas
 - Very small
 - Used the long baselines available at CHARA: 250 300 m
 - Wavelengths of observation: H and K
 - Added in archival PTI data (H and K @ 85 and 100 m)
- Data span 6 years
 - PTI (2000, 2003, 2004)
 - CHARA (2004 & 2006)

Angular Diameter and Stellar Parameters

- Limb Darkened Model
 - $\Theta_{LD} = 0.533 \pm 0.029$ mas
- Linear Radius
 - Using D = 29.8 ± 0.5 pc - R = 1.70 ± 0.10 R_{Sun}
- Temperature
 - Using L = 16.3±0.6 Lsun (determined from SED fit)
 - $-T_{eff} = 8887 \pm 242 \text{ K}$
- Mass

GeorgiaStateUniversi

- Surface gravity $\log(g) = 4.0 - 4.2$

Observatoire

- M = 1.1 – 1.7 M_{Sun}

- Mass range mostly a result of the uncertainty in the log(g)
- Radius uncertainty contributes only ~0.1 M_{Sun} in mass uncertainty

Georgia State University

In Comparison to other A-Stars ...

Star	Spectral Type	Radius	Gravity	Mass
		[R _{Sun}]	[cm s ²]	[M _{Sun}]
Vega	A0V	2.78 ± 0.02 (eq) 2.26 ± 0.07 (pole)	3.98	2.3 ± 0.2
Sirius	A1V	1.71 ± 0.01	4.31	2.01 ± 0.05
β Leo	A3V	1.72 ± 0.04	4.26	1.97 ± 0.09
λ boo	A3V kB9.5mB9.5	1.70 ± 0.10	4.0-4.1	1.1 – 1.7

HR Diagram and the Age of λ Boo

- Solar-Metallicity Tracks Predict
 - $M \sim 2.0 \ M_{Sun}$
 - pre-MS Age: 8 30 MYr
 - post-MS Age: 80 300 MYr
 - Derived mass does *not* agree with solarmetallicity mass
- Metal-Poor Tracks Predict
 - pre-MS: $M \sim 1.6 M_{Sun}$, Age: 3 4 MYr
 - post-MS: M ~1.2 M_{Sun}, Age: 1 2 GYr(!)
 - Likely *not* pre-MS no evidence for HAeBe-like phenomenon
- This is only one λ Boo star

Georgia State University

- Where do the rest fall ?
- Can the λ Boo phenomenon occur during both ms and post-ms lifetimes?
- Are metal-poor tracks appropriate for all λ Boo stars?

