FLUOR technical issues

V. Coudé du Foresto
Camera – short term issues

• On CHARA, FLUOR was using CHARA Classic’s NICMOS until Summer 2006
• It was then expected that the IOTA NICMOS camera (originally used by FLUOR 1998-2002) could be assigned to FLUOR:
 – This would enable dual Classic / FLUOR operation
 – CHARA NICMOS optimized for Classic

• But:
 – IOTA NICMOS chip turned out to be dead
 – Replacement chip found at NOAO (thanks Steve!), should be installed soon
 • Performances remain to be evaluated (engineering array?)
 • If positive FLUOR can then be offered again
Camera – longer term perspective

- LESIA to build 2 (possibly 3) clone camera systems
 - One « lab camera » for Persée interferometric nuller bench
 - One « sky camera » for ‘OHANA and FLUOR
 - Possibly two sky cameras if budget permits (~250k€ total)
- These systems will be optimized of HAR applications
 - Based on PICNIC array (near-science grade for sky)
 - Low-noise (read and reset), fast readout electronics, windowing options
 - Dedicated electronics (no SIDECAR ASIC) based on ‘Ohana solution
 - Digital fast I/O interface
- Gains for FLUOR:
 - Better sensitivity
 - Throughput in spectrally dispersed mode
 - More robust solution than current IOTA NICMOS
- Project timeline:
 - 11/06: start of project (JM Réess PM, + 2 electronics engineers, + 1 cryogenist)
 - 03/07: start procurement of arrays
 - 07/07: delivery of arrays
 - Autumn 07: commissionning in Meudon
 - Winter 08: commissionning at CHARA
CHARA Collaboration Year-Three Science Review

<table>
<thead>
<tr>
<th>Program</th>
<th>PICNIC</th>
<th>Test Plan & Rev. Date</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPA Number</td>
<td>343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>7/15/03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Engineer</td>
<td>M. Farris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector ID</td>
<td>93311-LR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>40.0 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel Size</td>
<td>40.0 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Array Format</td>
<td>256 X 256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Temp.(s)</td>
<td>80 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel Rate</td>
<td>250 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame Rate</td>
<td>0.028 sec/frame</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Data

<table>
<thead>
<tr>
<th>Astro-K QE</th>
<th>68.50%</th>
<th>Scev</th>
<th>2.70%</th>
<th>Scev/M</th>
<th>3.90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astro-H QE</td>
<td>N/A</td>
<td>Scev</td>
<td>N/A</td>
<td>Scev/M</td>
<td>N/A</td>
</tr>
<tr>
<td>Astro-I QE</td>
<td>N/A</td>
<td>Scev</td>
<td>N/A</td>
<td>Scev/M</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- Noise: 13.0 e
- Icark: 0.152 e/sec
- Gain: 273 e/mV
- Well Capacity: >136 Ke
- Linearity: N/A
- Operability: 99.90% Astro-K
- Operability Definition: > 50% of mean QE
- Interconnect: 99.56%

Test Comments:
Science grade FPA with edge effect.
FLUOR control SW overhaul

- Why an overhaul?
 - Current control SW written in LabView:
 - No longer supported for MacOS => migration is needed anyhow
 - Exotic platform in the CHARA environment
 - « Legacy software » => maintenance and upgrade gets more and more difficult
 - New camera will force major SW changes anyhow
 - Not well adapted for remote control
• Phased approach:
 – First FLUOR G3 to be replaced by Target RT Linux box
 – Then overhaul of FLUOR control GUI
 – Final objective is easy remote operation from Meudon

• Implementation in line with new camera

• A dedicated SW engineer for this project (A. Sevin)

Figure 1: Design for a future implementation of the FLUOR control software
Other issues

• Trees…
 – At S2 for observations of ζ Lep, γ UMa, β Uma

• Real estate?
 – Need to anticipate changes, if any