

CHARA Array Observations of Disks around Be Stars

Douglas R. Gies (and friends) CHARA Georgia State University

Georgia State Univ

Be stars: rapidly rotating, massive stars with circumstellar disks

- B spectral type stars (11 30 kK) that are relatively unevolved (core H-burning)
- Circumstellar gas disks revealed by <u>emission lines</u> (hydrogen Balmer series), <u>infrared excess</u> continuum emission, and <u>linear polarization</u> (of scattered star light)
- Disk features inherently time variable:
 B → Be → B ...(months to decades)

Wavelength

This is from Doppler shift of gas moving toward and away from the observer.

Georgia State Univer

bservatoire

LESIA

CHARA Collaboration Year-Three Science Review

Resolution with the CHARA Array

Dbservatoire LESIA

- Hα disks resolved (Stee et al. GI2T; Tycner et al. NPOI)
- Expect IR excess from ionized gas f-f and b-f emission
- Should appear in *K*-band ($\lambda = 2.1 \mu m$)

GeorgiaStateUniver

CHARA Array Observations (Gies et al. 2007, ApJ, 654, 572)

- *K*-band interferometric observations (2003 2005) of Be stars γ Cas, ϕ Per, ζ Tau, κ Dra
- Moderate to long baselines

Georgia State Univ

- CHARA Classic beam combiner
- Represents first resolution of NIR disks of northern Be stars
- Southern Be stars resolved by VLTI/Amber (α Ara, κ CMa; Meilland et al. 2007a,b)

Georgia State Univ

Models of *K*-band Visibility

- Uniform disk star with set angular diameter (π, R_s)
- Disk geometry (Hummel & Vrancken 2000) $\rho(R,Z) = \rho_0 R^{-n} \exp[-0.5(Z/H(R))^2]$ ρ_0 = base density (g cm⁻³) n = radial density exponent $H(R) = R^{3/2} C_s / V_K$ = disk scale height
- Observer parameters
 - i = inclination of disk normal
 - α = position angle (E from N) of disk normal

Models of K-band Visibility

- Isothermal disk $T_d = 0.6 T_{eff}$ (star) (Carciofi & Bjorkman 2006) maximum emission: Planck function for T_d
- IR free-free and bound-free optical depth (Waters 1986; Dougherty et al. 1994)
- IDL code: integrates ρ^2 along rays through disk $I = S_d (1 - e^{-\tau}) + S_* e^{-\tau}$
 - S_d = source function for disk
 - $S_* =$ source function for uniform star
- Fourier transform images to get visibility *V* (Aufdenberg et al. 2006)

 ζ Tau: single star fit $\alpha = 38^{\circ}, i = 90^{\circ}, \rho_0 = 2 \times 10^{-10}, n = 3.1$

Checks: Ha Interferometry

Parameter	γ Cas	φ Per	ζTau	к Dra
α (MkIII)	109	28	32	•••
α (NPOI)	121	29	28	•••
α (CHARA)	116	49	38	21
<i>i</i> (MkIII)	46	63	>74	
<i>i</i> (NPOI)	55	>55	>74	•••
<i>i</i> (CHARA)	51	69	90	26
θ (MkIII)	3.5	2.7	4.5	•••
θ (NPOI)	3.6	2.9	3.1	•••
θ (CHARA)	2.0	2.3	1.8	1.8
Georgia State University				

Predicting Disk Sizes from $H\alpha$

- Grundstrom & Gies 2006, ApJ, 651, L53
- Use same models to estimate disk HWHM for observed Hα strength
- With parallax, predict angular size of disk
- Recent Hα observations from KPNO Coudé Feed (Grundstrom 2007)

Georgia State Universit

NASA IRTF

- Need contemporary measurement of NIR excess flux from disk
- 2006 September run at **ITRF** Hawaii for Spex observations of 12 Be stars
- Reductions underway (Richardson)

GeorgiaStateUnivers

- Enlarge the sample of Classic observations of northern Be stars (from Grundstrom survey)
- υ Cyg (resolved by Baines; August 2006)
- Other good targets with disks 2 mas or larger: β Psc, o Cas, ψ Per, η Tau, 48 Per

Georgia State Univer

Future CHARA Observations

- In depth studies of individual targets:
 γ Cas and ζ Tau with FLUOR and MIRC
- Example: FLUOR observations from 2006 November of γ Cas (Touhami, Merand)

- Disk structures: spiral arms and other asymmetries
- Example: Hα changes in the spectrum of ζ Tau (Grundstrom 2007)

- Disk structures: long term evolution
- Example: Time lags in the optical continuum and Hα variations in the spectrum of X Per (Grundstrom et al. 2007)
- Is NIR flux formed close to star like visual flux?

Georgia State Univer

l'Observatoire LESIA

- Disks in interacting binaries experiencing mass transfer
- Example: β Lyr accretion disk and bipolar outflows from H α observations (Harmanec 2002); angular diameters of the donor and disk are \approx 1.6 and 3.2 mas

• MIRC program planned

GeorgiaStateUniversity