Self-Calibrating Systems: An Update on η Orionis

David O’Brien
Dr. Harold McAlister
Georgia State University
3/15/07
Self-Calibrating Systems

- Systems of multiplicity 3+
- Separation of close binary and wide component
 - large enough to resolve the two components
 - small enough to allow observations of both at the same time
- Visibility of wide component is used to calibrate the visibility of the binary star

“wide” system presents separated fringe packets

“close” system is a visibility binary
η Orionis – A Hierarchical Quintuple System

- **η Ori**
 - AB: \(\rho = 115 \) mas, \(\Delta m = 6.0 \), \(P = 10^5 \) yr
 - C: \(\rho = 1.7 \) mas, \(\Delta m = 1.3 \), \(P = 10^3 \) yr
 - A: \(\rho = 50 \) mas, \(\Delta m = 1.3 \), \(P = 9.2 \) yr
 - Aab: \(\rho = 1.0 \) mas, \(\Delta m = 0.8 \), \(P = 9 \) day (eclipsing)
 - Aa: \(\rho = 1.0 \) mas, \(\Delta m = 0.8 \), \(P = 9 \) day (eclipsing)
 - Ab: \(\rho = 1.0 \) mas, \(\Delta m = 0.8 \), \(P = 9 \) day (eclipsing)
 - B1 V
 - B1 V
 - B1 V
 - B3 V: β Cep var.
η Orionis

• η Ori is the prototype system for this study

• Aab,c system ($\rho \sim 50$ mas) was first resolved by speckle interferometry (McAlister 1976).

• Aab system ($\rho \sim 1$ mas) is an eclipsing binary and should be resolved at Array’s longest baselines.

• Aab = target system, Ac = calibrator
Observations

• η Ori observed 128 times between Nov. 10, 2004 and Dec. 16, 2005; most of them on a 313 m baseline.

• Most observations lasted several minutes each; a few had durations of nearly 30 minutes.

• Shift-and-added separated fringe packet envelopes were produced to determine V_{Aa} and V_{Ac}.
Observations: The Good
Observations: The Bad

Ten Shifted Fringe Envelopes

Weighted Mean Fringe Envelope
Observations: The Ugly

Ten Shifted Fringe Envelopes

Weighted Mean Fringe Envelope
Calibration
(Following ten Brummelaar)

- First, must correct normalized visibility:
 Normalized V:
 \[V_A = \frac{A_A}{<I_A>} \]
 \[V_B = \frac{A_B}{<I_B>} \]
 where A is the amplitude of the fringe and $<I>$ is the mean intensity of the scan

- For a single star, this is no problem, because the mean intensity of the scan is equal to the mean intensity of the star
Calibration

- When two stars are observed in the same scan, the mean intensity becomes the sum of the mean intensities of both components:
 \[
 V_A' = \frac{A_A}{<I_A + I_B>}, \quad V_B' = \frac{A_B}{<I_A + I_B>}
 \]

- Eventually, end up with
 \[
 \frac{V_A}{V_B} = \beta \left(\frac{V_A'}{V_B'} \right)
 \]
 where \(\beta = \frac{<I_B>}{<I_A>} = 10^{0.4\Delta m} \)

 and component B is designated as the fainter component
Determining β for η Ori

- In η Ori, Ac is the fainter component, so
 \[\frac{V_{Aab}}{V_{Ac}} = \beta \left(\frac{V_{Aab}'}{V_{Ac}'} \right) \]

- Assume a value for V_{Aab} and V_{Ac} for observations obtained at eclipse phases near 0° and 180° where the Aab system is unresolved and combine with observed V_{Aab}'/V_{Ac}' to get β.
Determining β for η Ori

• For a nearly edge-on orbit, angular diameters of 0.21 and 0.17 mas for Aa and Ab (De Mey 1996), semi-major axis of 0.5 mas, and an orbital phase of 25°, $V_{Aab} = 0.876$

• Furthermore, for orbital phases around 0° and 180° ($\pm 25^\circ$) in Aab, visibility difference between Aab and Ac is primarily dependent on Δm.

• For angular diameter of 0.17 mas, $V_{Ac} = 0.98$
Determining β for η Ori

- $V_{Aab} = 0.876$ and $V_{Ac} = 0.98$, combined with data from JD 53319 (where orbital phase was 25°) gives $\beta = 0.303$ and $\Delta m_K = -1.298$

- Apply this β value, along with $V_{Ac} = 0.98$ to all other data sets to get calibrated visibility V_{Aab}.
Calibrated Visibilities

Epoch Index

V

0 20 40 60 80 100 120

0.2 0.4 0.6 0.8 1 1.2
Orbit Results from OrbGrid

• OrbGrid performs a search within a definable grid space and calculates reduced \(\chi^2 \) at each grid point. It typically adopts the spectroscopically determined elements \(P, T, e, \omega \) and performs the search within a grid involving \(a, i, \Delta m, \Theta_A, \Theta_B, \) and \(\Omega \).

• For \(\eta \) Ori Aab, the simplest set of unknown orbital elements are the semi-major axis \(a \) and the nodal longitude \(\Omega \) as the remaining parameters are available elsewhere (or don’t matter much).
Orbit Results from ORBGRID

Input (De Mey et al. 1996):

\[P = 7.9893 \text{ days} \]
\[T = 46392.128 \]
\[e = 0.0 \]
\[i = 87.5^\circ \]
\[\omega = 0.0^\circ \]

Best Fit:

\[a = 1.1 \text{ mas} \]
\[\Omega = 168^\circ \]

with

\[\chi^2 = 2.9 \text{ for this fit} \]
Future work

• Hmm, not so good… For a better fit, we’ll try varying some of the other parameters, namely T and/or Δm_{Aab}

• We hope to use this approach to derive orbits for 18 other self-calibrating systems. Some data for these has already been obtained.