# **Science with VEGA**

**MELLES GRIOT** 





- Early science (with 2 T):



> <u>The interacting binary  $\beta$  Lyrae (P =13 d), H $\alpha$ , LR or MR, differential phase,</u> June - October, baselines S1-S2, E1-E2, W1-W2, super-synthesis effect, simultaneous IR observations.

> <u>Disc formation around  $\delta$  Sco</u>, MR, long term observational campaign, March-May, short baselines (S1-S2, E1-E2), simultaneous IR observations.

> <u>Stellar activity and mass ejection of the supergiant RIGEL</u>, MR & HR, H $\alpha$ , H $\beta$ , differential phase, October- November, S1-S2, E1-E2

Coronal magnetospheric or disc wind from the HAe/Be star AB Aur, LR, S1-S2 & E1-E2, super-synthesis effect

Measuring the disc dust and gas around the B[e] star HD 61623, LR & MR, Differential phase, S1-S2 & E1-E2, super-synthesis effect, simultaneous IR observations (Samer Kanaan's thesis)



### The interferometric Baade-Wesselink method



GeorgiaStateUniversity



d [pc] = 9.305  $\Delta \mathbf{R}$  [R<sub> $\odot$ </sub>] /  $\Delta \theta$  [mas]



Important : study of systematics effects between Infrared and Visible ( $\eta$ , LD, p-factor)



### Cepheids with the VEGA/CHARA instrument







- Second phase (> 2T):
- > The fast rotator REGULUS, LR & MR, large number of measurements and high precision
- Ups Sgr: another interacting binary
- Measurement of Cepheides distances
- Line forming regions around WR stars, LR & MR
- Studying the dust and gas formation around B[e] stars
- Pop. II MIRA (extention of the program)
- Pulsating binaries (high precision mass determination)
- Determination of fundamental parameters of stars (M, sini, Diff. Rotation, diameters)
- Structuration of the wind around O, B, A supergiant stars.
- Magnetic stars (AP/CP stars): measurements in 2 polarizations
- β Cep, RR Lyrae and other pulsating stars: measuring the shell extension in lines and the shock waves propagation in the stellar atmosphere



## A & B Supergiants: RIGEL

1993



GeorgiaStateUniversity



bservatoire

LESIA

1994

 $mv=0.1, \phi = 2.77 mas:$ S1-S2 (34m, v=0.4) E1-E2 (65m, v=0.1, 1er visibility lobe max, tracking IR ?)

#### Kaufer et al. 1996







- Early science (with 2 T):



> <u>The interacting binary  $\beta$  Lyrae (P =13 d), H $\alpha$ , LR or MR, differential phase,</u> June - October, baselines S1-S2, E1-E2, W1-W2, super-synthesis effect, simultaneous IR observations.

> <u>Disc formation around  $\delta$  Sco</u>, MR, long term observational campaign, March-May, short baselines (S1-S2, E1-E2), simultaneous IR observations.

> <u>Stellar activity and mass ejection of the supergiant RIGEL</u>, MR & HR, H $\alpha$ , H $\beta$ , differential phase, October- November, S1-S2, E1-E2

Coronal magnetospheric or disc wind from the HAe/Be star AB Aur, LR, S1-S2 & E1-E2, super-synthesis effect

Measuring the disc dust and gas around the B[e] star HD 61623, LR & MR, Differential phase, S1-S2 & E1-E2, super-synthesis effect, simultaneous IR observations (Samer Kanaan's thesis).







- Early science (continue):
- Measuring the optically thin atmosphere of pop. II MIRA: RT Cyg, LR, June -October, S1-S2, E1-E2, W1-W2, IR tracking & visible measurement.
- <u>Measuring the Limb-darkening and projection factor of pulsating Cepheides</u>,  $\underline{\zeta \text{ Gem}, \delta \text{ Cep}, \text{ simultaneous IR observations (FLUOR).}}$











- Second phase (> 2T):
- > The fast rotator REGULUS, LR & MR, large number of measurements and high precision
- Ups Sgr: another interacting binary
- Measurement of Cepheides distances
- Line forming regions around WR stars, LR & MR
- Studying the dust and gas formation around B[e] stars
- Pop. II MIRA (extention of the program)
- Pulsating binaries (high precision mass determination)
- Determination of fundamental parameters of stars (M, sini, Diff. Rotation, diameters)
- Structuration of the wind around O, B, A supergiant stars.
- Magnetic stars (AP/CP stars): measurements in 2 polarizations
- β Cep, RR Lyrae and other pulsating stars: measuring the shell extension in lines and the shock waves propagation in the stellar atmosphere





association of observations with high angular and spectroscopic resolution

- > to raise the ambiguities of the interpretation of the spectro-photometric data
  - extension of the circumbinary envelope (VLTI- MIDI & AMBER)
  - origin of the Hα emission (VEGA on CHARA)
    I Observatoire LESIA

**GeorgiaStateUniversity** 





- Second phase (> 2T):
- > The fast rotator REGULUS, LR & MR, large number of measurements and high precision
- Ups Sgr: another interacting binary
- Measurement of Cepheides distances
- Line forming regions around WR stars, LR & MR
- Studying the dust and gas formation around B[e] stars
- Pop. II MIRA (extention of the program)
- Pulsating binaries (high precision mass determination)
- Determination of fundamental parameters of stars (M, sini, Diff. Rotation, diameters)
- Structuration of the wind around O, B, A supergiant stars.
- Magnetic stars (AP/CP stars): measurements in 2 polarizations
- β Cep, RR Lyrae and other pulsating stars: measuring the shell extension in lines and the shock waves propagation in the stellar atmosphere



### The Wind Structure of the O9.5Ia Supergiant $\alpha$ Cam

#### *Why* do we study the wind of massive stars?

- mass loss and stellar evolution
- momentum deposition and chemical enrichment of the ISM

### Evidences of structured winds in O stars

- X-ray wind emission resulting from micro-shocks
- Discrete variable absorption features in wind lines
- UV wind line profiles cannot be matched by homogeneous wind models

### Consequences of structured winds

- Lower mass loss rates by a factor of 3 to 10 at least
- Structures are formed deep in the wind
- Lower momentum deposition in the ISM (affect evolution of SN remnants)
- · Effect on the predicted ionizing fluxes not assessed fully yet

Mass loss rates derived from homogeneous wind models need urgent revision. We need to constrain empirically the density structure of O star winds to build new realistic wind models of massive stars



## The Wind Structure of the O9.5Ia Supergiant $\alpha$ Cam

*How* do we constrain the wind structure of O stars?

- mid-IR, sub-mm, and radio observations
- H $\alpha$  interferometry

### **Density diagnostics**

- UV lines are sensitive to the wind density
- Recombination lines (H $\alpha$ ) are sensitive to the *density-squared*
- Free-free continuum is sensitive to the *density-squared*

### Mid-IR to radio observations

- Free-free continuum probes further in the wind at longer wavelengths
- **Spitzer** (GO cycle 3, PI: Lanz) IRS observations of the mid-IR continuum and hydrogen recombination lines of  $\alpha$  Cam obtained in late 2006
- VLA radio fluxes existing in the litterature; sub-mm obs. in planing stage

### Proposed CHARA/VEGA campaign on $\alpha$ Cam

- Wavelength-dependent visibilities in H $\alpha$  (also mapping through the wind)
- Several bases and orientations to look for non-spherical wind
- H $\alpha$  known to vary on several timescales: repeat the observations on daily, monthly, and yearly timescales to map changes in the wind (rotation, ...)
- Photospheric radius:  $\approx$  30 R<sub>sun</sub> ; distance:  $\approx$  800 pc ; V = 4.3

Wind extends from 0.15 to 0.4 mas



Georgia State University









- Second phase (> 2T):
- > The fast rotator REGULUS, LR & MR, large number of measurements and high precision
- Ups Sgr: another interacting binary
- Measurement of Cepheides distances
- Line forming regions around WR stars, LR & MR
- Studying the dust and gas formation around B[e] stars
- Pop. II MIRA (extention of the program)
- Pulsating binaries (high precision mass determination)
- Determination of fundamental parameters of stars (M, sini, Diff. Rotation, diameters)
- Structuration of the wind around O, B, A supergiant stars.
- Magnetic stars (AP/CP stars): measurements in 2 polarizations
- β Cep, RR Lyrae and other pulsating stars: measuring the shell extension in lines and the shock waves propagation in the stellar atmosphere





- Second phase (continue):
- Extragalactic targets: need AO, BLR characterization, larges baselines, LR
- ➤ A Galaxy far, far away: other Galactic Cepheids
- ➤ Target of Opportunity (<u>Novae</u>, etc...)

QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image.

















# **Rapid rotators: differential rotation,** flattening, gravity darkening

| Name             | V sin i<br>Km/s | Spectral<br>Type | Mag V | Angular<br>diameter |
|------------------|-----------------|------------------|-------|---------------------|
| Altair           | 240             | A7V              | 0.77  | ~ 3 mas             |
| Regulus          | 353             | B7V              | 1.35  | ~1.4 mas            |
| zeta<br>Ophiuchi | 295             | O9.5Ve           | 2.5   | ~0.5                |











- Second phase (> 2T):
- > The fast rotator REGULUS, LR & MR, large number of measurements and high precision
- Ups Sgr: another interacting binary
- Measurement of Cepheides distances
- Line forming regions around WR stars, LR & MR
- Studying the dust and gas formation around B[e] stars
- Pop. II MIRA (extention of the program)
- Pulsating binaries (high precision mass determination)
- Determination of fundamental parameters of stars (M, sini, Diff. Rotation, diameters)
- Structuration of the wind around O, B, A supergiant stars.
- Magnetic stars (AP/CP stars): measurements in 2 polarizations
- β Cep, RR Lyrae and other pulsating stars: measuring the shell extension in lines and the shock waves propagation in the stellar atmosphere





## **Fundamental parameters of stars with exoplanets: Diameter and Teff (cf Ellyn talk)**

| star name          | distance<br>(pc) | V mag | K mag | _RAJ2000       | _DEJ2000       | ang diam<br>(mas) |
|--------------------|------------------|-------|-------|----------------|----------------|-------------------|
| Gamma<br>Cephei    | 11.8             | 3.22  | 1.04  | 23 39<br>20.84 | +77 37<br>56.4 | 2.98              |
| HD 219449          | 45               | 4.21  | 1.60  | 23 15<br>53.47 | -09 05<br>15.8 | 2.48              |
| Epsilon<br>Eridani | 3.2              | 3.73  | 1.78  | 03 32<br>55.91 | -09 27<br>29.9 | 2.04              |
| HD 59686           | 92               | 5.45  | 2.92  | 07 31<br>48.38 | +17 05<br>09.9 | 1.33              |
| HD 104985          | 102              | 5.79  | 3.27  | 12 05<br>15.10 | +76 54<br>20.6 | 1.13              |
| Ups And            | 13.47            | 4.09  | 2.86  | 01 36<br>47.85 | +41 24<br>20.1 | 1.09              |
| 70 Vir             | 22               | 5.00  | 3.50  | 13 28<br>25.85 | +13 46<br>44.7 | 0.85              |
| Tau Boo            | 15               | 4.50  | 3.51  | 13 47<br>15.81 | +17 27<br>25.0 | 0.78              |
| 47 Uma             | 13.3             | 5.10  | 3.75  | 10 59<br>28.02 | +40 25<br>48.6 | 0.74              |
| HD 19994           | 22.38            | 5.06  | 3.75  | 03 12<br>46.44 | -01 11<br>45.8 | 0.74              |
| rho CrB            | 16.7             | 5.40  | 3.86  | 16 01<br>02.65 | +33 18<br>12.5 | 0.73              |
| 55 Cnc             | 13.4             | 5.95  | 4.02  | 08 52<br>35.79 | +28 19<br>51.0 | 0.72              |
| 51 Peg             | 14.7             | 5.49  | 3.91  | 22 57<br>27.96 | +20 46<br>07.7 | 0.71              |
| HD 3651            | 11               | 5.80  | 4.00  | 00 39<br>21.87 | +21 15<br>02.4 | 0.71              |

















- Second phase (> 2T):
- > The fast rotator REGULUS, LR & MR, large number of measurements and high precision
- Ups Sgr: another interacting binary
- Measurement of Cepheides distances
- Line forming regions around WR stars, LR & MR
- Studying the dust and gas formation around B[e] stars
- Pop. II MIRA (extention of the program)
- Pulsating binaries (high precision mass determination)
- Determination of fundamental parameters of stars (M, sini, Diff. Rotation, diameters)
- Structuration of the wind around O, B, A supergiant stars.
- Magnetic stars (AP/CP stars): measurements in 2 polarizations
- β Cep, RR Lyrae and other pulsating stars: measuring the shell extension in lines and the shock waves propagation in the stellar atmosphere





#### Massive stars in interacting binaries

#### Massive stars

- very hot and luminous
- main source for galactic UV flux
- impact on the interstellar medium and on the stellar formation process
- > evolution affected by a strong stellar wind
- uncertain fundamental stellar parameters



#### Massive interactive binary systems

- mass transfer and mass loss
- Complex circumstellar environment, rich in hot gas and dust
- system with exchange of mass ( $M \sim 10-20 M_{\odot}$ )

a donor star losing mass towards a star hidden in an accretion disc or a circumbinary structure ( $\beta$  Lyr et  $\upsilon$  Sgr )

collaboration with the czech group of the Ondrejov observatory





LESIA

Observatoire

GeorgiaStateUniversity





Observatoire

**GeorgiaStateUniversity** 





- Photocenter location depends of the central wavelength and of the flux ratio of the different emitting regions.
- In H $\alpha$  line, observed light come from the bulk of the emission in addition to subjacent continuum.
- The Interferometric Differential Imaging technique (Vakili et al., 1997) allows to measure the relative phase of the fringe visibility and to determine the relative position of the emitting regions.
  - > At  $\lambda \approx 656$  nm, for the 107 m baseline, the fringe spacing is i  $\approx$  1.26 mas.
  - > photocenter separation ~ 0.4 mas ⇔ ~ 110° bump in the curve of the visibility phase across the spectral line.

#### $\succ$ refine the location and extension of the H $\alpha$ emission?



- Early science (with 2 T):



> <u>The interacting binary  $\beta$  Lyrae (P =13 d), H $\alpha$ , LR or MR, differential phase,</u> June - October, baselines S1-S2, E1-E2, W1-W2, super-synthesis effect, simultaneous IR observations.

> <u>Disc formation around  $\delta$  Sco</u>, MR, long term observational campaign, March-May, short baselines (S1-S2, E1-E2), simultaneous IR observations.

> <u>Stellar activity and mass ejection of the supergiant RIGEL</u>, MR & HR, H $\alpha$ , H $\beta$ , differential phase, October- November, S1-S2, E1-E2

Coronal magnetospheric or disc wind from the HAe/Be star AB Aur, LR, S1-S2 & E1-E2, super-synthesis effect

Measuring the disc dust and gas around the B[e] star HD 61623, LR & MR, Differential phase, S1-S2 & E1-E2, super-synthesis effect, simultaneous IR observations (Samer Kanaan's thesis).



# $\delta$ Sco basic parameters

- One of the closest Be star d=123 pc
- One of the brightest V=2.2 K=2.7
- Spectral type: B0.2 IVe
- Well known non-eclipsing binary system with a 1.5 mag fainter companion with P=10.6 years and e=0.94
- Next periastron in 2011: interesting ! (may trigger disk formation/destruction)







## **Disk Formation and Dissipation**

Achernar's case







Variation of the equivalent width (EW)

Variation of the double-pics separation (DPS)

DPS<sub>max</sub>=460kms⁻¹~2.vsin i

DPS<sub>min</sub>=160kms<sup>-1</sup>

Observatoire







## **Disk Formation and Dissipation**

A Correlation ?







### **Disk Formation and Dissipation** Achernar's case



Critical rotation

wind > 10R.

Wind and disk « independants »

- Outburst between 1991-1995
  - O V<sub>r</sub>~0.2kms<sup>-1</sup>
    - $\circ$  R<sub>max</sub>~8R\* (If keplerian)

3<sup>d</sup> Phase?

New Outburst till 2002 ?

AMBER LR (Imaging) + AMBER HR (kinematics)













## disk formation and Dissipation





Miroshnichenko et al. 2003 A&A 408,305

- Growing disk till 2000 (Periastron)
- C R<sub>disk</sub>(2003)~10R∗
- O V<sub>r</sub>~0.4kms<sup>-1</sup>
- Keplerian ?





0.5

B (m)

### $\delta$ Sco simulations





0.5

B (m)



## $\delta$ Sco: visibility variation as a function of time



- Early science (with 2 T):



> <u>The interacting binary  $\beta$  Lyrae (P =13 d), H $\alpha$ , LR or MR, differential phase,</u> June - October, baselines S1-S2, E1-E2, W1-W2, super-synthesis effect, simultaneous IR observations.

> <u>Disc formation around  $\delta$  Sco</u>, MR, long term observational campaign, March-May, short baselines (S1-S2, E1-E2), simultaneous IR observations.

> <u>Stellar activity and mass ejection of the supergiant RIGEL</u>, MR & HR, H $\alpha$ , H $\beta$ , differential phase, October- November, S1-S2, E1-E2

Coronal magnetospheric or disc wind from the HAe/Be star AB Aur, LR, S1-S2 & E1-E2, super-synthesis effect

Measuring the disc dust and gas around the B[e] star HD 61623, LR & MR, Differential phase, S1-S2 & E1-E2, super-synthesis effect, simultaneous IR observations (Samer Kanaan's thesis).







- Early science (continue):
- Measuring the optically thin atmosphere of pop. II MIRA: RT Cyg, LR, June -October, S1-S2, E1-E2, W1-W2, IR tracking & visible measurement.
- <u>Measuring the Limb-darkening and projection factor of pulsating Cepheides</u>,  $\underline{\zeta \text{ Gem}, \delta \text{ Cep}, \text{ simultaneous IR observations (FLUOR).}}$





