

The Case for Spatial Filtering CHARA Classic

Dr. Gerard T. van Belle

Science Community Development Lead Michelson Science Center California Institute of Technology

The Ides of March, 2007

CHARA Collaboration Year-Three Science Review

CHARA Collaboration Year-Three Science Review

GeorgiaStateUnivers

PTI Combination Scheme

- PTI's combined beams are fed into a NICMOS detector dewar
- The *white light channel* is a combined beam fed directly into the can
 - Used for immediate fringe tracking
- The *spectrally dispersed channel* is routed through a prism first
 - Also sent through a single mode fiber
 - Used for group delay updates, and ultimately used for science
 - Detected flux is $\sim 30\%$ of the WL side
- This setup delivers both sensitivity and precision

l'Observatoire LESIA

CHARA Collaboration Year-Three Science Review

PTI "Classic"

Reference: Colavita et al. 1999

PTI Data on η Boo

- Recently published result (van Belle, Ciardi & Boden 2007 ApJ 657 1058)
- Spectral channel data used for the paper, but WL channel data preserved in the data stream
- Allows for a demonstration of the performance of the non-spatially filtered WL channel versus spectrometer channel

Incoherent WL V² Time Trace -- 100125.sum

Incoherent Spec V² Time Trace -- 100125.sum

Georgia State University

η Boo: Non-Spatially Filtered

η Boo: Spatially Filtered

Error Histogram: Non-SF

Error Histogram: SF

Performance, Quantitatively

- Median individual V² measurement relative error (σ_{V2}/V^2): 0.039 (SF) versus 0.129 (non-SF)
- η Boo size: 2.154±0.048 mas (SF) versus
 2.255±0.148 mas (non-SF)

The Downside

- Alignment
 - Possibly a challenge as a function of telescope pointing (wander of telescope beam on fiber head)
- Multi-r₀ Regime
 - Gains may not be as substantial as for PTI
 - Will throw away more 'bad photons'

Why CHARA Classic?

- Most sensitive beam combiner
- Most used beam combiner
- Easiest to use
- Possibly an only 'slight' modification to the existing beamtrain
- Can be done for near-term operations

The Exhortation

- Even within the context of the caveats, substantial gains in performance are possible
- Possibly no (or at least little) sacrifice in sensitivity

Observatoire de la Côte d'Azur