VEGA: Status Report and Future Plans march 2009, Nice

VEGA and CHARA teams Grasse-Nice, Lyon, Grenoble Mt Wilson

Outline

Observatoire LESIA

- Reminders about VEGA
 - Principle of the spectrograph
 - Observing, processing
- Data Reduction Software
 - Differential mode
 - V² mode
 - 3T mode
- The situation of the 2008 data
- Preliminary results on faint objects
- Feedback on VEGA and CHARA
- Future plans

Georgia<u>State</u>Universit

VEGA – CHARA Interface

Multimode interferometry

Image plane, 2D analysis, photon noise limitation Bério et al., 1999, 2001

$$\left\langle \left| \widetilde{I} \right|^2 \right\rangle \Longrightarrow \left\langle V^2(\frac{B}{\lambda}) \right\rangle_{\left[\frac{B-D}{\lambda};\frac{B+D}{\lambda}\right]} + V^2(f) \text{ with } f \in \left[\frac{B-D}{\lambda};\frac{B+D}{\lambda}\right]$$
$$\left\langle \widetilde{I}_1 \cdot \widetilde{I}_2^* \right\rangle \Longrightarrow \left| V_1 V_2 \right| + \left(\arg(V_1) - \arg(V_2) \right)$$

• SNR increases

Georgia<u>State</u>Universit

Deservatoire LESIA

Differential Interferometry approach

 Increased limiting magnitude and SNR

 $SNR(DI) = \sqrt{SNR_{Ch1}}.SNR_{Ch2}$

• But external fringe tracking is clearly a must!

Observing Modes 2T

(3T and 4T modes are still in qualification)

- Differential Visibility (Veⁱ, mode)
 - Medium Resolution
 - $H\beta$ in blue channel, $H\alpha$ in red channel
 - ..
 - High Resolution
 - Spectral Line on one detector, continuum on the second one
 - Low Resolution (not really adapted)
- V² measurements (V² mode)
 - Low Resolution: best choice is λ =620nm
 - Medium Resolution: λ_{red} =690, 720 or 740nm
 - High Resolution: only bright object
- SPIN mode
 - Small slit, red channel only.

Georgia State University & Kono Construction - LESIA () Instance institute () Instance i

Control System Issues

- <u>VEGA_PLAN</u> + SCHEDULING (OB + night schedule)
 - Needs for more than one baseline!
 - Needs for automatic scheduling
- <u>CONTROL</u> (local and remote) (OB player)
 - Group Delay Tracking for 4T
- ARCHIVE
 - Data base in development
- **PROCESSING** (local and remote)
 - See later

D/r0 not large enough for our analysis

Speckle function not good enough (pupils)

Use of the low frequency estimator

Consequences on the calibration strategy

Other issues:

Photon filtering (detector issues) Photon centroiding Adaptation to new data A lot of bug corrections ...

Study of the instrumental visibility

Observations in August 08 on S1S2/W1W2/S2W2 of five calibrators

- Rapid changes between stars, all along the night
- Repetition on different nights

Study of the instrumental polarization

- Observations in August 08 on S1S2 of three calibrators
 - Observations in linearly polarized light sandwiched by observations in natural light
 - Observations during 4 or 5 hours after the transit
 - Calibrators of various declinations
 - 56 recorded files processed in autocorrelation

HD	δ	V	Spectral Type
166014	28°45'45.0''	3.8	B9.5V
184006	51°43'47.2''	3.8	A5V
195725	62°59'38.7''	4.2	A7III

V² study

V² vs. hour angle (on S1S2)

HD 195725 (δ = 62°59'39")

No significant visibility effect vs. angle hour whatever λ

LESIA

NASA Exoplanet Sci

Observatoire

Average V² vs. polarization

HD166014 (28°)	V_NAT	V_High	V_Low
$\lambda = 640 \text{ nm}$	0.36 ± 0.02	0.34 ± 0.02	0.36 ± 0.03
$\lambda = 650 \text{ nm}$	0.34 ± 0.03	0.36 ± 0.02	0.38 ± 0.04

HD184006 (51°)	V_NAT	V_High	V_Low
$\lambda = 640 \text{ nm}$	0.40 ± 0.04	0.34 ± 0.03	0.38 ± 0.02
$\lambda = 650 \text{ nm}$	0.38 ± 0.03	0.38 ± 0.03	0.44 ± 0.01

HD195725 (63°)	V_NAT	V_High	V_Low
$\lambda = 640 \text{ nm}$	0.26 ± 0.01	0.24 ± 0.01	0.24 ± 0.02
$\lambda = 650 \text{ nm}$	0.28 ± 0.01	0.28 ± 0.02	0.28 ± 0.02

CHARA

CHARA Collaboration Year-Five Science Review

V² conclusion

- Processing is almost qualified
 - $\quad \text{More analysis of the V^2 qualification program}$
 - OIFITS production validated for model fitting
- Main instrumental bias
 - Noise detector
 - Group delay
 - Differential photometry (measurement?)
 - Pupils (lateral and longitudinal) (to be done)
 - Difference of air path (to be done)
- Absolute calibration
 - Various examples (13 Cyg, gam Equ, Sirius, ...)
 - 2 to 5% accuracy (to be improved by temporal analysis)

Spectral Resolution	Typical Magnitude	Best performances
30000	3.5	4.2 (δ Cep)
6000	5.5	5.8 (?)
1500	6.5	7.4 (MWC361)
GeorgiaStateUniver		oservatoire LESIA

CHARA Collaboration Year-Five Science Review Validation of the SNR estimations with the 2008 measurements

3T operation. HD3360, oct. '08

0.4

oire

¹/₄ pixel for photon centroiding

- Photon events localization
 - Photon events localization and 21 surrounding pixels recorded
 - Centroiding in post processing
- Needed in real time for coherence tracking

		Jun 08 (4n/13)	Aug 08 (12n/13)	Oct 08 (6n/9)	Nov 08 (3n/9)
Antest	Qualification				
	P Cygni				
0	βLyr				
%	ups Sgr				
	δSco				
%	Fast rotators				
07	g Equ (ro Ap)				
%	δ Cep (HR)				
%	βСер				
70	Deneb				
	MWC 361				
	chi Oph				
	Theta1 Ori C				
	Rigel				
	48 and				
	AB Aur				
	Be				
	Sirius				
	13 Cyg				
	3T				
	. (s) 🔊	l'Observat		NEXSO	Contest Contest

Limiting magnitude in low spectral resolution

- MWC361 observations in July 08 on S1S2 and W1W2
- AB Aur observations in October 08 on S1S2 and W1W2
- Spectral decorrelation implies to track fringes over a reduced spectral window (i.e. quasi blind mode)
- Fringe drift is faster with the low resolution and very nearby calibrators are mandatory in order to minimize this effect that prevents us for long integration.

AB Aur

- AB Aur is a **prototype of Herbig Ae/Be stars** and, as such, it has been fully observed in spectroscopy, in infrared interferometry (PTI, IOTA, ...)
 - Spectral type : A0
 - Magnitudes : V = 7 / K = 4.4
 - Distance : 144 pc
 - Luminosity : 144 L_{\odot}
 - Large infrared excess
 - No jets, no CO flow
 - Variability of the H α emission at a scale of a few hours

⇒ Stellar activity, link wind and disc, ...

CHARA/VEGA spectrum (October 8th)

AB Aur observations

- **Baseline S1S2:** 2 recordings on the calibrator HD29646 and 2 on AB Aur on October 8th with good seeing ($r_0 > 10$ cm)
- **Baseline W1W2:** 2 recordings on the calibrator HD29646 and 2 on AB Aur on October 9th with lower seeing
- Processing by **spectral densities** with a bandwidth of 20 nm (SNR issue)
 - W1W2: even if the fringe peak is visible, its position is not significantly detected and data cannot be processed
 - S1S2:
 - Clear detection of the fringes in all data files
 - Correction for the residual optical path difference and for the bias due to the red detector noise.
 - Analysis V² vs. λ to detect effects across the H α emission line.

V² vs. λ (on S1S2)

Calibrated V² vs. λ (on S1S2)

AB Aur is clearly resolved in the H α line on S1S2 baseline.

Due to the large spectral window of the autocorrelation (and the induced convolution effect), interpretation in terms of angular size in $H\alpha$ has to be carefully performed.

R_c corotation radius

 R_{in} is strongly model-dependent and especially depends on the scattered light model : - Benisty & Pinte: $R_{in} \sim 3.2$ mas

- Tannirkulam et al. (2008): R_{in} ~ 1.6 mas

MWC 361

. Close-binary system seen by spectroscopy and interferometry with IOTA (H band, Monnier et al. 2006) ($\rho \approx 15$ mas, $\Delta M \approx 1-1.5$)

. Young early Be star (Herbig B[e]) with a resolved disk (3 mas) and a lower mass late-type Be companion (not common such young star in a multiple system)

. Excellent tool for disk evolution models

A challenge for CHARA/VEGA: $M_V = 7.4$

Fringes obtained using the shortest baseline S1S2 (~ 34 m)

Study of the disk characteristics in the visible from the analysis of $H\alpha$ region is in progress

MWC 361 (preliminary analysis)

Feedback on VEGA

- Routine operation for the alignment and observations.
- Remote operation is validated.
- Lot of work for the night scheduling.
- Huge effort on the data processing. Things are almost stabilized now but important developments are in progress.
- Some difficulties for the spectral calibration in HR mode
- Cooling of red detector + cosmetic of red detector.
- $V^2(ALGOLR) < V^2(ALGOLB)$
- Important problems with calibrators: at least 5 bad calibrators found. Accurate and exact estimations of diameter?

Feedback on CHARA

• W1W2 with W1 as ref. gives much higher V² than W2 as ref.

- Clock issues and fringe drift ?
- Variation of offset on same base+pop ?
- Great improvement on pupil and image quality.
- Most important: CHARA is working really very well!

Future Plans

- New data processing release
- 3T with calibrators and ¼ pix. Validation and science use
- 4T group delay tracking validation (fringes validation for the 1-4 baseline)
- Installation of the new VIS/TT beam splitters ($85\% \rightarrow VEGA$, $15\% \rightarrow TT$)
- New spectral lamp?
- Use of the CHARA LDC
 - How?
 - Fully qualified?

- VIS + IR simultaneously (VEGA+FLUOR in june)
- Improved acquisition (cal-target-cal more rapidly)

Future plans (Science)

- Conclude the current good programs
- Complete the open programs
- 3T routine operation in 2009 (improved DRS needed)
- 4T validation (check interest)
- VIS+IR (+LDC): really important issue for science purpose
- External fringe tracking for low V² or low mV?
- Development of more photosphere science (fundamental characteristics of stars) in parallel to the spectrally resolved approach: benefit from the highest angular resolution.

Thanks to CHARA team:

Hal, Theo, Judit, Laszlo, Nils, Chris, PJ, Gail and Larry

Thanks to VEGA team:

Alain, Alain, Aurélie, Daniel, Isabelle, Jean-Michel, Karine, Michel, Olivier, Omar, Philippe, Philippe

Welcome to Jean-Baptiste (postdoc for VEGA >09/09)

We are looking for PhD students....

X CONTROL

<u>File Edit View H</u>elp

V² ALGOLR vs V² ALGOLB

NASA Exoplanet Science

