

Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars

> Gerard T. van Belle PRIMA Instrument Scientist European Southern Observatory April 7, 2008

Interferometric Observations of Supergiants: Direct Measures of the Very Margest Stars Smallest

M Dwarfs

Gerard T. van Belle PRIMA Instrument Scientist European Southern Observatory March 17, 2009

Back of the Envelope Estimate: Supergiants

- ► Guesstimates (things we *think* we know):
 - ▶ Main sequence stars: $1 M_{\odot}$, $1 R_{\odot}$
 - ▶ Supergiant stars: : $10 M_{\odot}$, $100 R_{\odot}$
- > Stellar lifetime T goes as $T \sim M^{-4}$

- > There are $\times 10^4$ fewer supergiants than main sequence stars
- Supergiants are ~10⁴ times brighter: will be detectable at a distance 100× further than main sequence stars
 - > A volume $\times 10^6$ greater
- Number of observable targets goes linearly with volume
- Ergo, 10² more supergiants to observe at a given apparent size
 - ▶ Most main sequence stars $<1 R_{\odot}$, and most supergiants $>100 R_{\odot}$, so things are even better than this estimate

Supergiants are obvious targets for interferometers!

Back of the Envelope Estimate: M-Dwarfs

- ► Guesstimates (things we *think* we know):
 - > Solar-type stars: 1 M_{\odot} , 1 R_{\odot}
 - > M-dwarfs stars: : 0.4 M_{\odot} , 0.4 R_{\odot}
- > Stellar lifetime T goes as $T \sim M^{-4}$

- > There are ×40 more M-dwarfs than solar-type stars
- M-dwarfs are ~100× fainter: will be resolvable at a distance 10× smaller than main sequence stars
 - > A volume $\times 10^3$ smaller
- Number of observable targets goes linearly with volume
- Ergo, 25× fewer M-dwarfs to observe at a given apparent size
 - Already difficult to resolve more massive main sequence stars (solar type) due to small size

M-dwarfs are not obvious targets for interferometers!

VLTI PRIMA Project

Essential Astrophysics: The HR Diagram

- Track/model
 stellar evolution
- Fundamental stellar properties
 - Luminosity
 - Radius
 - > Temperature
- Examine properties of groups of stars
 - Clusters, associations

CHARA of Yesteryear: M-Dwarf Diameters

European Organization for Astronomical Research in the Southern Hemisphere

Metallicity Dependency of Diameter Deviation?

European Organization for Astronomical Research in the Southern Hemisphere

Direct observation of fundamental stellar parameters

> Effective temperature is defined as: $L = 4\pi\sigma R^2 T_{EFF}^4$, which can be rewritten as:

Basic Parameters from Angular Diameters (θ)

$$T_{\rm EFF} = 1.316 \times 10^7 \left(\frac{F_{\rm BOL}}{\theta_{\rm R}^2} \right)$$

> F_{BOL} is the bolometric flux (W cm⁻²), θ_{R} is the Rosseland mean stellar angular diameter (mas)

> Linear radius is simply: $R = \frac{1}{2}\theta \times d$

- > Hipparcos (Perryman et al. 1997) distances now available
- For those M-dwarfs that are resolvable, they tend to be bright enough to have Hipparcos distances
- But many nearby stars are too dim for good distances

Nuances of $F_{\rm BOL}$ Fitting

> Heterogeneous sources? By type (objective prism, slit

European Organization for Astronomical Research in the Southern Hemisphere

VLTI PRIMA Project

- However, peak of flux curve at ~1µm for many M-dwarfs: most photometry here is quite poor
- > Reddening

> Photometry

Can be degenerate with spectral type estimate in doing SED fitting

> Empirical model (Pickles 1998) versus theoretical model (eg.

> Not a significant factor for M-dwarfs

Stars are *not* blackbody radiators

> Spectral type estimates

> Spectral type template

Especially cool dwarfs: many features

spectroscopy, etc.) or practitioner

Hauschildt's NextGen models)

Wide- and narrow-band can be used usefully

Bolometric Flux Fitting

Bolometric Flux Fitting II.

Limb darkening

European Organization for Astronomical Research in the Southern Hemisphere

LTI PRIMA Project

- Stars are *not* uniform disks
- Gaseous, not solid, sphere
 - End up looking 'into' the star
- Good and bad
 - > Have to account for this
 - Measuring this can be used to characterize internal structure of star
 - Direct probe of internal temperature structure
- For M-dwarfs, a model atmosphere will provide a correction factor from UD to LD
 - Correct account of molecular features? (Here be dragons!)

European Organization for Astronomical

Southern Hemisphere

VLTI PRIMA Project

Current Stock of Results

European Organization for Astronomical Research in the Southern Hemisphere

VLTI PRIMA Project

- Borrowing from Davis (1997), increase of 145 to 340 stars in the literature (as of ~2003)
- Notable improvement: Application of interferometry to evolved stars
- Notable area for improvement: *Still* main sequence stars, **particularly** late-type, and supergiants
 - Homogenous, large datasets are absent from the literature for both

Previous CHARA work : 6 Diameters
This work: 11 (and counting)

Spectral					
Туре	Ι	II	III	IV	V
0	3	0	0	0	1
B0-B4	2	2	3	2	2
B5-B8	2	0	2	1	1
A0-A3	1	0	0	2	5
A5-A7	0	0	1	0	1
F0-F5	4	1	0	1	0
F8	2	0	0	0	0
G0-G5	3	1	2	3	0
G7-G9.5	2	1	22	0	0
K0-K3.5	5	16	31	0	0
K4-K7	3	1	14	0	0
M0-M4	12	13	70	0	0
M5-M8	1	2	31	0	0
Totals	40	37	176	9	10

Evolved	
Stars	
Carbon	22
M Miras	37
C Miras	5
S Miras	4
Total	68

Effective Temperature versus V-K

European Organization for Astronomical Research in the Southern Hemisphere

/LTI PRIMA Project

- Most straightforward quantity: T_{EFF}
 "All V-K is good
 - for is estimates of $T_{\rm EFF}$ "
 - This is not necessarily a bad thing
 - A significantly more robust index than spectral type
- Down to 3500K, curve seems fairly linear with V-K
- > At $T_{\rm EFF} < 3500$ K, curve seems to flatten out

Effective Temperature versus V-K

European Organization for Astronomical Research in the Southern Hemisphere

VLTI PRIMA Project

- Red points: PTI data
- Seems to bear out trend down to 3500K
 - Highlights power of CHARA, though, with smallest stars
- Low T_{EFF} versus V-K curve 'flattening' seen before: Miras
 - For Miras, was explained in terms of MOLsphere

Linear Radius versus V-K

European Organization for Astronomical Research in the Southern Hemisphere

VLTI PRIMA Project Significant amounts of scatter seen as a function of V-K

- eg. at V-K~4.0, factors of 2× see in linear radius
- > As with T_{EFF} , starting to see 2^{nd} order effects?
 - > Age?
 - ≻ [Fe/H]?
 - Or just evidence that V-K poor proxy for *R*?

Red points: PTI data

- Some scatter as well (but not as much)
- Different V-K regime

Linear Radius versus V-K

Influence of [Fe/H] in Linear Radius?

European Organization for Astronomical Research in the Southern Hemisphere

VLTI PRIM/ Project

- Ranges from
 [Fe/H]=-1.5
 (small bubble)
 to +0.50 (big
 bubble)
 - Interesting low
 [Fe/H] outliers
 at V-K~4
- Average value of -0.35
 - [Neglected to provide [Fe/H] for PTI data yet]

Radius versus Mass

European Organization for Astronomical Research in the Southern Hemisphere

VLTI PRIMA Project

- > Mass from mass- $M_{\rm K}$ relationship found in Delfosse+ (2000)
- Green points: Berger+ (2006) CHARA
- Blue: new CHARA
- Red line: Chabrier & Baraffe (1997) model ([Fe/H]=0)
- > Region of interest: $0.40-0.60 M_{\odot}$
 - Convection peculiarities in models?
 - Missing from new data
 - Deviations due to spotting?

Temperature versus Radius

European Organization for Astronomical Research in the Southern Hemisphere

- More 'robust' and model-independent than measures of M, [Fe/H]
- > However, a bit of plotting θ vs. θ
 - *F*_{BOL} data is the additional information
- As with T_{EFF} vs. V-K, linear trend down to 3500K(?) with 'pedestal' at <3500K?</p>

VLTI PRIMA Project

Red points: PTI data

<3500K
 'pedestal': 2nd
 order TEFF
 effects
 dominating?
 > Age, [Fe/H]?

Temperature versus Radius

Temperature versus Radius: Relationship of Mass?

European Organization for Astronomical Research in the Southern Hemisphere

- Mass effect in T vs R?
- Bubble size a function of mass
 - ▶ 0.25-0.86 M_☉

Remember this Plot?

European Organization for Astronomical Research in the Southern Hemisphere

Things Look a Little Different

European Organization for Astronomical Research in the Southern Hemisphere

VLTI PRIMA Project

 \succ

- Difficult to reproduce
 - Nominally includes Berger+ 2006 data
- How to derive 'predicted' R values from CB97?
 - $M_{\rm V} \rightarrow M_{\rm BOL} \text{ with } \\ BC(T_{\rm EFF}) \rightarrow L \\ \rightarrow R(L)$
 - Oh, and [Fe/H] values for Mdwarfs? All over the place

The 'To-Do' List

European Organization for Astronomical Research in the Southern Hemisphere

Further CHARA observations

- > In the 'sweet spot' of R= $\{0.5, 0.8\} R_{\odot}$, V-K= $\{2.25, 3.25\}$, M= $\{0.4, 0.6\} M_{\odot}$
- > Better precision?
 - * Currently at $\sigma_{\theta} / \theta \sim 4.5\%$
 - Possible with repeating measures?
- > Better supporting information
 - ≻ [Fe/H]
 - * Homogenous measures a plus
 - Broad-band photometry: R,I (z?) bands
 - > F_{BOL} errors reported at ~1%, but with $\chi_v^2 >> 1$
- > Chase after the new generation of models