

First science results with VEGA II: differential interferometry

by Ph. Stee

With the help of the VEGA TEAM and the following slides dealers :

D. Bonneau

O. Chesneau

O. Delaa

A. Domiciano A. Meilland

D. Mourard K. Perraut

For thousands of videos, images and fact-files illustrating the world's species visit www.arkive.org

ARKive

www.arkive.org

NASA Exoplanet Sci

This media is protected by copyright, please see end of clip for details. Use of this media is restricted, please see www.arkive.org/terms.html.

LESIA

l'Observatoire

Differential analysis essentialy done with the R2 grating (medium resolution)

Grating X-λ mode Spectral distance between red		Spectral distance between red and blue cameras
R1: 1800tr/mm	R=35000 Δλ=6.7nm	18 nm
R2: 300tr/mm	R=5000 Δλ=40nm	140 nm
R3: 100tr/mm	R=1700 Δλ=120nm	Not usable simultaneously

Parameters of the red and blue cameras of the spectrograph

Parameters	Red camera	Blue camera
λ_{\min}	0.58µm	0.45µm
λ_{\max}	0.87µm	0.75µm
$\lambda_{ m ref}$	0.7µm	0.57µm
Slit width	61µm	50µm
Maximum field of view (center of detector)	5.4"	4.2"
Number of spectral channels	173	156
Internal magnification of the spectrograph	1.4	1.8
(between the slit and the image plane)		

Observatoire

Differential Spectral Analysis

- Estimation of the fringe visibility modulus $V(\lambda)$ and the differential phase $\Phi_{diff}(\lambda)$
- Data processing around Hα
 - Reference band: fixed, $\lambda_1 = 6560$ Å with $\Delta \lambda = 180$ Å
 - Science band: $\Delta\lambda$ = 4 Å, moving by step of 4 Å, λ_2 = 6572-6648 Å
- Data processing in the continuum
 - Reference band: fixed, $\lambda 1 = 6560$ Å with $\Delta \lambda = 180$ Å
 - Science band: $\Delta\lambda$ = 4 Å, moving by step of 4 Å, λ 2 = 6572-6648 Å
- > For each step we measure $V(\lambda_1)^* V(\lambda_2)$ and $\Phi_{diff}(\lambda_2)$ for science target and calibrator

> Calibration process is used to deduce $V_{sci}(\lambda)$

Relation phase shift - sky displacement (close to Hα)

 $d(mas) = 0.37 \frac{\phi(\text{deg})}{B(m)}$

Ex: S1S2 B=34m φ=20° → d=0.21 mas W1W2 B=107m φ=1° → d=3.4 μas !

Be stars: open questions

- Origin of the Be phenomenon:
 - Why some hot stars are forming disks and some others not ?
 - What is the effect of the rotation ?
 - What is the effect of the magnetic field ?
 - What is the influence of stellar winds ?
 - What is the importance of these disks on the stellar evolution ?
 - What is the geometry and kinematics of Be stars's disks?
 - Are all Be stars binaries ?

The CHARA/VEGA stars sample

- $\Box \psi$ Per HD22192 B5Ve d=214 pc
- 48 Per HD25940 B3 Ve d=169 pc
- $\Box \chi \text{ Oph}$ HD148184 B1.5 Ve d=150 pc
- $\Box \gamma \text{ Cas}$ HD5394 B0 IVe d=187 pc
- P-Cyg HD193237 B2 pe d=1923 pc $\Box \beta Lyr$ HD174638 B7Ve d=270 pc $\Box \upsilon SgR$ HD181615 F2p d=513 pc

CHARA/VEGA baselines used

Projected scaled Baseline
Major-axis from polarization

GeorgiaStateUniversity

48 Per

HD25940 B3 Ve

d=169 pc

γ CasHD5394 B0 IVe d=187 pc

γ Cas natural light

GeorgiaStateUniversity

Stee 1996, A&A, 311, 945

6558 & 6566 Å

 ± 3.00

0.5

N-S

N-S

E-W

E-W

E-W

E-W

Observatorre

vatoire

Preliminary conclusions

- $\forall \psi$ Per: S1S2 @ 2 A.H. Well resolved in H α , clear S signature of a rotating disk (seen nearly edge-on), W1W2 still need some work, blue data unusable.
- 48 Per: S1S2 @ 2 A.H. Well resolved in H α , S shape @ 1 baseline but not for the 2 baseline, close in the sky plane (?), 35°<i<45° Resolved with W1W2 in H α but no S signature for the differential phase: disk + wind ?
- $\ \chi \text{ Oph: S1S2 @ 1 A.H. Resolved in H}\alpha, \text{ small S signal in the line (compatible with i= 20°?)}$
- $\[\gamma Cas: S1S2 @ 3 A.H. in natural and 2 polarized directions: S shape different in Natural and Polarized light: need to work on the interpretation (i=45°). \]$
- P-Cyg: S1S2 @ 1 A.H. Well resolved in Hα, No signature of a rotating disk (wind !), W1W2 still need some work...

Observations of interacting massive stars with CHARA/VEGA

Massive binary systems

▷ Sgr, binary system harboring an hydrogen deficient star (evolved system)

 $> \beta$ Lyrae: binary system with current mass-exchange

 υ Sgr: D. Bonneau, O. Chesneau, P. Koubsky, D. Mourard , P. Stee, M. Netolicky β Lyrae: D. Bonneau , O. Chesneau, D. Mourard , P. Stee

Observations β Lyrae with CHARA/VEGA

Preliminary results

- \succ the source is unresolved in the spectral continuum.
- The source associated with the Hα emission is clearly resolved. the value of the visibility is nearly constant with the orbital phase.
- be the differential phase exhibits significant offset in the Hα line.
 offset is correlated with the orbital phase.

Next step

to precise the present analysis of the Hα and Hel observations.
 observations with longer baseline to resolve the binary system.
 interpretation of the results using a morphological model of β
 Lyrae.

υ Sgr binary system

The dusty disk of υ Sgr constrained by MIDI/VLTI observations

Promising CHARA/VEGA observations of Ups Sgr

VEGA configuration

- mid-spectral resolution R = 5000
- Blue channel ($\lambda \sim 500$ nm)
- Red channel ($\lambda \sim 650$ nm including H α)

Results

- S1S2 baseline (B_{skv} = 23 m PA = -16°):
 - \succ In the continuum, V² ~ 0.7
 - \succ In H α , dip of the visibility, phase offset of ~ 30°
- W1W2 baseline (B_{sky} = 107 m, PA = 97°):
 - \succ In the continuum, V² ~ 0.6
 - $> \ln H\alpha$. V² < 0.1

GeorgiaStateUniversi

Preliminary conclusions

High continuum visibility in both baseline

ver-resolved source + compact source

Compact source probably dominated by the primary flux. Extended source due to the scattered light from the dusty disk.

Extended source in Hα FWHM ~2.5mas i.e. surrounding the 2 stellar components.

\blacktriangleright Position of the Ha photocenter \neq of the continuum source

bservatoire

LESIA

Differential spectral analysis

Future directions

- Clearly a vibration problem on W1W2 with W2 as a reference
- Very easy to obtain good fringes with S1S2
- To obtain usable data with the blue camera we need good seeing conditions (correlation SNR vs r0 to be done).
- Difficult to find (good) calibrators especially for the large baselines.
- At least 3-4 papers to come for 2009....

Thank you !

