Closure Phase Interferometry: Lambda Andromedae

Rob Parks
Georgia State University
March 19th 2009
Nice, France
Thesis Project

- Interferometric modelling of active giants
- Study stellar spot characteristics
- Compare results to measure of B field
- Began with pilot study of Lam And
Committee and Collaborators

Advisor
Dr. Russel White

Committee
Dr. William Bagnuolo
Dr. Douglas Gies
Dr. Hal McAlister

Collaborators
Dr. Frank Fekel (TSU)
Dr. Greg Henry (TSU)
Dr. John Monnier (UM)
Dr. Ettore Pedretti (St. And)
Dr. Gail Schaefer (GSU)

Special Thanks
Ming, Chris, PJ, CHARA team
Motivations

• Better understanding of spot characteristics
 – Tracer of B fields
 – Stellar rotation

• Current spot “imaging” methods problematic
 – Too little information (light curve inversion)
 – High dependance on a priori information (doppler tomography)
Target List

• Instrumentation criteria
 – Dec > 5°
 – H mag < 4th
 – Θ = 1 – 4 mas

• Target criterion
 – Single [truly or SB1] giants
 – Δ V mag > 0.1

• Initially RS CVns
Auxillery Observations

- Hard Labor Creek Observatory (GSU) or Fairborn Observatory (TSU)
- Simultaneous or contemporaneous
- Photometry UBV(RI)$_c$
 - Check to expected flux loss
 - Measure of effective temperature
- Spectroscopy $R \sim 30,000$
 - Measure of eff. temp., log g, Hα line strength
 - Could be used to create Doppler map
 - Could be used to measure B field – Zeeman splitting
Pilot Study: Lam And

- CHARA/MIRC beam combiner
 - Prefer phase information over spot contrast
- First epoch
 - November 17, 2007
- Second epoch
 - August 18th – 21st, 2008
- Third epoch
 - September 20th, 2008
Visibility Curve

1st Lobe: Star Size
2nd Lobe: Limb-darkening, spot size
3rd Lobe: Spot size, small-scale structure
Visibility Comparison
Closure Phase

Measured Source “Antenna”

\[
\begin{align*}
\Phi_{12} &= \phi_{12} + \varepsilon_1 - \varepsilon_2 \\
\Phi_{23} &= \phi_{23} + \varepsilon_2 - \varepsilon_3 \\
\Phi_{31} &= \phi_{31} + \varepsilon_3 - \varepsilon_1
\end{align*}
\]

Combine \(\Rightarrow\)

\[
\Phi_{12} + \Phi_{23} + \Phi_{31} = \phi_{12} + \phi_{23} + \phi_{31}
\]

- Source terms are baseline-dependent.
- Error terms are antenna-dependent.
“Lambdy Andy”

\[\Pi = 38.74 \pm 0.68 \text{ mas} \]
\[\text{vsini} = 6.5 \text{ km/s} \]
\[P_{\text{phot}} = 54.33 \text{ days} \]
\[P_{\text{orb}} = 20.5212 \text{ days} \]
\[H \text{ mag} = 1.501 \]
\[\Delta V \text{ mag} = 0.22 \]

SB1, white dwarf companion
G8 III

Monnier (unpub.)

\[M = 0.65 M_{\text{sun}} \]
\[R = 7.5 R_{\text{sun}} \]

11 yr stellar activity cycle (Hall 1991)
Spot Model

• 8+ parameters
 – Star size, limb-darkening coefficient, ellipticity, spot size, spot position [x,y], flux ratio, temp. profile coefficient
 – Model capable of any number of spots

• Minimization on visibility or closure phase (Filho 2008)

\[
\chi^2_{\text{V}}(z) = \sum \frac{1}{\sigma_{V_i}^2} \left(V_{\text{data}}^i - V_{\text{model}}^i \right)^2
\]

\[
\chi^2_{\text{T}}(z) = \sum \frac{1}{\sigma_T^2} \left| e^{i\phi_{\text{data}}} - e^{i\phi_{\text{model}}} \right|^2
\]

• Grey limb-darkening relation: \(1-\epsilon + \epsilon \cos \Theta\)
Limb-darkening Disk

Size: 2.750 mas
Epsil: 0.462
χ^2_V: 9.818
Limb-darkening Disk

Size: 2.750 mas
Epsil: 0.462
\(\chi^2_v : 9.818 \)
Elongated Limb-darkening Disk

Size: 2.819 mas
Epsil: 0.467
Ellip 0.0469
χ^2_V: 8.109
Elongated Limb-darkening Disk

Size: 2.819 mas
Epsil: 0.467
Ellip 0.0469
χ^2_v: 8.109
Elongated Limb-darkening Disk w/ Spot

Star Size: 2.819 mas Spot Size: 1.13 mas
Epsil: 0.467 80 pixels
Ellip 0.0469 x: 60
χ^2_V: 10.847 y: 60
χ^2_C: 0.016
Elongated Limb-darkening Disk w/ Spot

Star Size: 2.819 mas Spot Size: 1.13 mas
Epsil: 0.467 80 pixels
Ellip 0.0469 x: 60
χ^2_v: 10.847 y: 60
χ^2_C: 0.016
The News So Far...

- Closure phase show asymmetries
- Simple models insufficient
- Strong signs towards spotted surface
Future Plans

• Improved method of minization
• Addition of elongation position angle
• More complicated spot structures
• Apply to multiple epochs of data
• Magic happens → Graduate