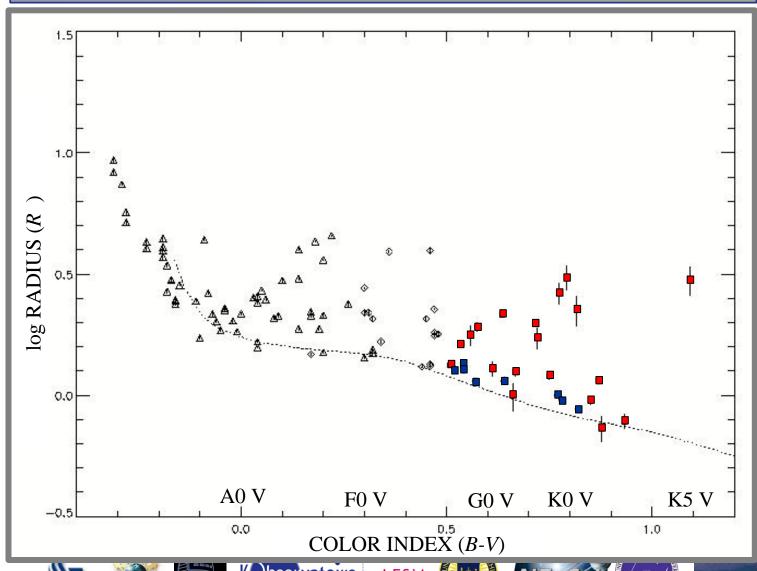


Characterizing Exoplanet Host Giant Stars

Ellyn Baines

Charoid #27

Naval Research Laboratory



CHARA + Andersen 1991

Tale of two projects...

Exoplanet Host Stars

- 11 targets
 - 6 giants
 - 4 subgiants
 - 1 dwarf
- Measured θ_{LD}
- Calculated $T_{\rm EFF}$
- Estimated R, M, age

Giant Stars

- 15 giants
- Measured θ_{ID}
- Calculated $T_{\rm EFF}$
- Estimated R, M, age
- Future oscillation studies combined with $\theta \rightarrow$ mass

Collaborators

Exoplanet Host Stars

- Hal McAlister
- Theo ten Brummelaar
- Judit Sturmann
- Laszlo Sturmann
- Nils Turner
- Stephen Ridgway
- PJ Goldfinger
- Chris Farrington

Giant Stars

- Folks on left plus:
- ESO:
 - Michaela Döllinger

- Thüringer Landessternwarte:
 - Felice Cusano
 - Eike Guenther
 - Artie Hatzes

(M)

Exoplanet Host Diameters

HD	Spectral Type	μ_{λ}	π (mas)	$ heta_{ m SED} \ ({ m mas})$	$ heta_{ m UD} \ (m mas)$	$ heta_{ m LD} \ (m mas)$	σ _{LD} (%)	$R_{ m L} \ (R_{\odot})$	$\sigma_{ m R}$ (%)
16141	G5 IV	0.27	25.67±0.66	0.381±0.012 [†]	0.480 ± 0.048	0.490±0.049	10	2.05±0.21	10
17092	K0 III	0.33	N/A	$0.531 \pm 0.029^{\dagger}$	$0.586 {\pm} 0.039$	0.601 ± 0.041	7	N/A	N/A
45410	K0 III-IV	0.31	17.92 ± 0.47	0.867 ± 0.066	0.946 ± 0.034	0.970 ± 0.035	4	5.82 ± 0.26	4
154345	G8 V	0.28	53.80 ± 0.32	$0.452 \pm 0.008 ^{\dagger}$	0.490 ± 0.026	0.502 ± 0.026	5	1.00 ± 0.05	5
185269	G0 IV	0.25	19.89 ± 0.56	$0.359\pm0.012^{\dagger}$	0.471 ± 0.032	0.480 ± 0.033	7	2.59 ± 0.19	7
188310	G9 III	0.32	17.77 ± 0.29	1.712 ± 0.053	1.671 ± 0.008	1.726 ± 0.008	0.4	10.45 ± 0.18	2
199665	G6 III	0.31	13.28 ± 0.31	$0.985 {\pm} 0.028$	1.083 ± 0.027	1.111 ± 0.028	3	9.00 ± 0.31	3
210702	K1 III	0.31	18.20 ± 0.39	$0.879\pm0.049^{\dagger}$	0.854 ± 0.017	0.875 ± 0.018	2	5.17 ± 0.15	3
217107	G8 IV	0.28	50.36 ± 0.38	$0.534\pm0.016^{\dagger}$	0.688 ± 0.013	0.704 ± 0.013	2	1.50 ± 0.03	2
221345	G8 III	0.32	12.63 ± 0.27	1.380 ± 0.164	1.297 ± 0.008	1.336 ± 0.009	1	11.38 ± 0.26	2
222404	K1 IV	0.32	70.91 ± 0.40	3.130 ± 0.211	3.331 ± 0.022	3.302 ± 0.029	1	5.01 ± 0.05	1

$T_{\text{EFF}}, F_{\text{BOL}}, L$

Star HD	$A_{ m V}$ (mag)	ВС	$F_{\rm BOL}$ (10 ⁻⁸ erg s ⁻¹ cm ⁻²)	Calculated T_{eff} (K)	$\sigma_{T ext{eff}}$ (%)	Range of T_{eff} from other sources (K)	$\log(L) \\ (L_{\odot})$
16141	$0.00^{\rm a}$	0.06 ± 0.04	5.2 ± 0.2	5040 ± 257	5	4900-5888	2.4 ± 0.1
45410	$0.03^{\rm b}$	0.29 ± 0.03	15.0 ± 0.5	4679 ± 92	2	4750-4898	14.6 ± 0.4
154345	0.20^{a}	0.40 ± 0.04	8.8 ± 0.4	5691 ± 159	3	5436-5570	1.0 ± 0.0
185269	0.13^{a}	0.01 ± 0.03	6.1 ± 0.2	5307 ± 187	4	5850-6166	4.8 ± 0.1
188310	$0.10^{\rm b}$	0.35 ± 0.02	49.3 ± 1.0	4720 ± 26	1	4635-4786	48.8 ± 0.9
199665	$0.00^{\rm b}$	0.28 ± 0.04	25.9 ± 1.0	5008 ± 80	2	4750-5012	45.9 ± 1.7
210702	0.10^{a}	0.32 ± 0.03	14.3 ± 0.4	4870 ± 62	1	4600-4898	13.5 ± 0.4
217107	0.10^{a}	0.09 ± 0.03	9.3 ± 0.3	4872 ± 57	1	4900-5704	1.1 ± 0.0
221345	$0.13^{\rm b}$	0.36 ± 0.03	32.3 ± 1.0	4826 ± 40	1	4582-4900	63.3 ± 1.8
222404	0.01^{b}	0.36 ± 0.00	180.6 ± 0.5	4722 ± 21	0.4	4566-4916	11.2 ± 0.0

Note. — ^avan Belle & von Braun (2009); ^bFamaey et al. (2005).

All BC values from Allende Prieto & Lambert (1999) except for HD 154345, which is from Cox (2000) with an assigned error of 10%.

PARAM Stellar Model

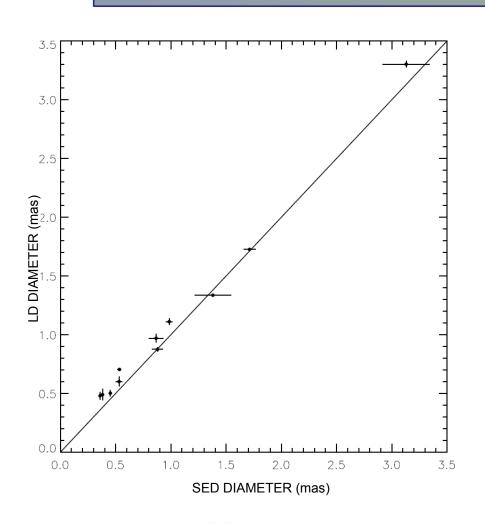
• Based on evolutionary tracks (Giardi et al. 2000)

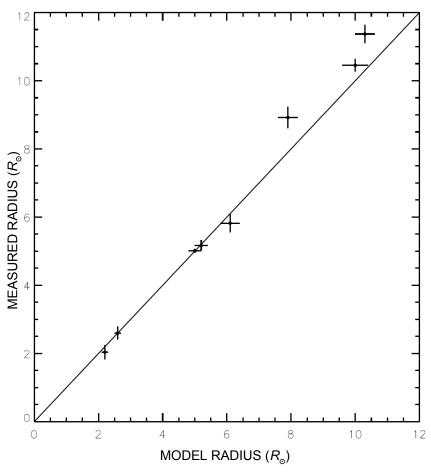
- Modified by da Silva et al. (2006)
 - Use theoretical isochrones and a Bayesian estimation method

- Inputs: T_{EFF} , [Fe/H], V mag, parallax
- Outputs: age, mass, $\log g^*$, R_{linear}^* , $\theta_{\text{LD}}^{(*)}$, $(B V)^*$

Model Results

Star HD	Average [Fe/H]	$R_{ m model}$ (R_{\odot})	${\rm Mass} \\ (M_{\odot})$	Age (Gyr)	Approx. M-S Spectral Type
16141	0.11 ± 0.07	2.2 ± 0.1	1.1 ± 0.0	6.7 ± 0.9	G0 V
45410	0.17 ± 0.05	6.1 ± 0.3	1.3 ± 0.1	4.2 ± 1.4	F6 V
185269	0.11 ± 0.05	2.6 ± 0.1	1.4 ± 0.0	3.4 ± 0.2	F5 V
188310	-0.27 ± 0.10	10.0 ± 0.4	1.0 ± 0.2	6.8 ± 3.5	G2 V
199665	-0.10 ± 0.12	7.9 ± 0.3	2.0 ± 0.1	1.2 ± 0.1	A5 V
210702	0.00 ± 0.05	5.0 ± 0.2	1.4 ± 0.1	2.6 ± 1.0	F5 V
221345	-0.32 ± 0.05	10.3 ± 0.3	1.1 ± 0.2	4.6 ± 1.9	G0 V
222404	0.08 ± 0.11	5.0 ± 0.2	1.2 ± 0.1	5.7 ± 2.2	F8 V



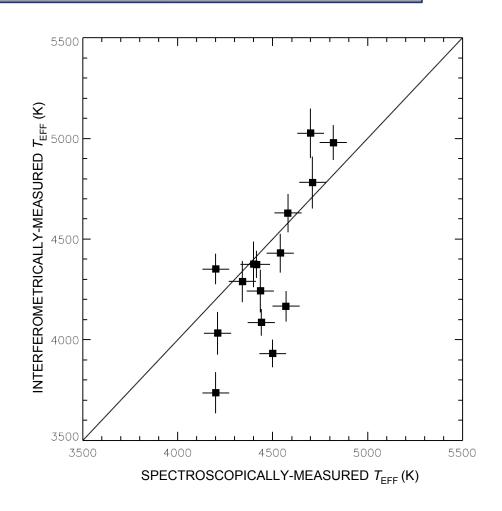


θ , R Comparison

W H

K III Diameters, T_{EFF} , F_{BOL}

Target HD	$ heta_{ m UD,measured} \ m (mas)$	$ heta_{ m LD,measured} \ m (mas)$	σ _{LD} (%)	$R_{ m linear} \ (R_{\odot})$	$F_{\rm BOL}$ (10 ⁻⁸ erg s ⁻¹ cm ⁻²)	$T_{\rm eff}$ (K)	$\sigma_{ ext{Teff}}$
32518	0.828 ± 0.022	0.851 ± 0.022	3	11.04 ± 0.77	11.1 ± 0.7	4630 ± 94	2
73108	2.161 ± 0.019	2.225 ± 0.020	1	18.79 ± 0.38	60.4 ± 3.5	4374 ± 66	2
106574	1.458 ± 0.027	1.498 ± 0.028	2	23.02 ± 0.92	22.5 ± 1.4	4166 ± 75	2
118904	1.842 ± 0.031	1.871 ± 0.032	2	25.38 ± 0.88	27.8 ± 1.7	3931 ± 68	2
136726	2.264 ± 0.020	2.293 ± 0.020	1	30.12 ± 0.70	59.3 ± 5.5	4289 ± 101	2
137443	1.638 ± 0.030	1.690 ± 0.031	2	20.51 ± 0.62	30.8 ± 2.8	4242 ± 105	2
138265	1.998 ± 0.037	2.062 ± 0.038	2	43.40 ± 2.75	27.6 ± 2.8	3736 ± 102	3
139357	1.040 ± 0.012	1.073 ± 0.013	1	13.63 ± 0.51	24.5 ± 2.3	5026 ± 121	2
150010	0.995 ± 0.028	1.024 ± 0.029	3	15.84 ± 1.08	13.5 ± 0.9	4430 ± 95	2
157681	1.600 ± 0.009	1.664 ± 0.009	1	34.19 ± 1.77	33.8 ± 3.4	4375 ± 112	3
167042	0.898 ± 0.017	0.922 ± 0.018	2	4.98 ± 0.07	17.4 ± 1.0	4979 ± 86	2
170693	1.981 ± 0.041	2.041 ± 0.043	2	21.19 ± 0.60	49.7 ± 2.7	4351 ± 75	2
195820	0.840 ± 0.040	0.863 ± 0.041	5	10.69 ± 0.62	13.0 ± 0.6	4781 ± 128	3
200205	1.963 ± 0.043	2.032 ± 0.045	2	41.23 ± 2.08	36.4 ± 3.4	4032 ± 105	3
214868	2.721 ± 0.015	2.731 ± 0.035	1	29.97 ± 0.88	69.3 ± 4.0	4086 ± 65	2



Question for the audience

 T_{EFF} measured spectroscopically by Döllinger et al.

• T_{EFF} measured using θ_{LD} by us

• Why the odd spread?

