Cophasing activities at Onera

Kamel Houairi Frédéric Cassaing

Cophasing at Onera

I/ Pupil-plane fringe sensing

- Persee
- Gravity

II/ Focal-plane fringe sensing

- Phase retrieval/diversity
- New algorithms under study (F. Cassaing)

PERSEE

• Context

Georgia State Univ

- Nulling demonstrator for formation-flying missions (Darwin/TPF-I, Pegase, FKSI, ...)
- Main objectives
 - $-10^{-4}\pm10^{-5}$ achromatic nulling
 - In the [1.6-3.2] μm spectral band
 - In presence of realistic disturbances
 - For several hours
 - Validate the full operation (star/fringe acquisition, tracking, calibration, unloading of fine correctors)

Consortium and sub-systems

В

С

Wide-band null
 Modified Mach-Zehnder

- 4 outputs (ABCD)
 - Spectral separation after combination
 - Common fringe sensor / science instrument

Nulling [1.6-3.2] μm

Fringe tracking [0.8-1.5] µm

Observatoire LESIA

Fringe sensor setup

- Spatial modulation
 - Allow high measurement frequency (fringe acquision)
 - D measured by fringe sensor
 - \rightarrow Real Time null depth monitoring
- Central fringe identification
 - Dispersion is the simplest way
 - Minimize detector noise
 - → 2 spectral channels are enough

Simultaneous ABCD in I & J

➔ 2 phases, 2 visibilities

Operating modes and free parameter optimization

Mode	Measurement	Estimator	Parameters
Detection	Visibility	$\widehat{V^2} = qV_I^2 + (1-q)V_J^2$	λ_{s}, q
Acquisition	Goup delay	Culd:KTime ¹⁴⁴ and a TIFF (LZW) decompresso are needed to see this picture.	$\lambda_{ m s}$
Tracking	Phase delay	OudsTime ^{Ter} and a TFFF (L2V) decompetitor are needed to see the posite.	λ_{s}, p

Estimator noises depend on λ_s

Dispersion: I = $[0.8-\lambda_s]\mu m - J = [\lambda_s-1.5]\mu m \rightarrow Optimal \lambda_s$?

l'Observatoire LESIA

Preliminary cophasing implementation at Onera

Backwards light injection

Detection

Alignment

Calibration

- Analytical equations of the spatial interferometer
 Linear system → OPD = f⁻¹(measurement)
- Need a calibration process

New extended coherencing algorithm (experimental results)

- Estimated OPD is λ -periodic \rightarrow two lambda analysis to extend the unambiguous range
- Classical algorithms are Λ periodic
- Estimation of the synthetic wavelength fringe order by a new (real time) agorithm

To do: Extension for N>2 spectral channels (PRIMA DATA)

bservatoire LESIA

Results of the fringe tracking

• Only laboratory disturbances, sampling = 150Hz

- Open loop: $\sigma_{opd} = 4.5 \text{ nm rms}$
- Closed loop: $\sigma_{opd} = 1.3$ nm rms

Gravity

• 2nd generation VLTI instrument

- Instrument design:
 - 4 UTs
 - AO correction
 - Fringe tracking

Fringe tracking residual OPD < $\lambda/10$

GRAVITY: 4 beam combination

- 4 telescopes to combine
 - 3 independent OPDs to control
 - Hyp.: pairwise based combination \rightarrow 6 baselines
- Several possibilities to combine the beams

What is the best combination? How to choose?

Observatoire LESIA

Systematic

procedure derived, based on noise propagation minimization

Gravity FS simulation

(coherencing + science measurements with fringe sensor)

Specification ($\lambda/10$) reached with loop frequency $f_s = 400 \text{ Hz}$

Onera's Perspectives for pupil-plane FS

- Persée :
 - Complete Persee installation and qualification
 - Operate cophasing and nulling systems in parallel
 - New PhD student for advanced control techniques
- Gravity
 - Refined simulation underway (Phase B)
 - New PhD student fall 2009 (Lesia-Onera)

