

MIRC Closure Phase Studies for Detection of Hot Jupiters

Ming Zhao (JPL), John D. Monnier (UM)

Xiao Che (UM) Ettore Pedretti, Nathalie Thureau (Univ. of St. Andrews) The CHARA Team

Why Hot Jupiters?

- Most approachable to characterize with current technologies
- Interesting features in the atmosphere:
 - Full of molecular bands: H₂O, CH₄, CO, CO₂
 - Clouds in the atmosphere, causing thermal inversion
 - Day-night flux variation: strong winds, heat redistribution
 - => Atmospheric characteristics may be similar to those of super Earths

Existing Direct Detections of Hot Jupiters

- 15 were directly detected by Spitzer, HST, and ground-based observations
 - Secondary transits:

HD 209458b, HD 189733b, Tres-1b, HD 149026b, OGLE-TR-56b, Tres-3b, CoRot-1b, HD80606b, XO-1b, Wasp-19b, Wasp-12b, Tres-2b, XO-2b

(Deming et al. 2005, 2006; Charbonneau et al. 2005; Harrington et al, 2007; Knutson et al., 2007, Snellen et al. 2009, Laughlin et al. 2009, Anderson et al, 2010, etc.)

- Non-transiting:

HD 179949 b, Ups And b (Harrington et al. 2006; Cowan et al. 2007)

What can interferometry add to the science of hot Jupiters?

- 1). Spectral information in the near-IR
 - Estimate global energy budget of hot Jupiters

What can interferometry add to the science of hot Jupiters?

- 1). Spectral information in the near-IR
 - Estimate global energy budget of hot Jupiters
- 2). Day/night flux variation and flux calibration for non-transiting hot Jupiters
 - Break down model degeneracy

- 3). Obtain inclination and determine accurate mass for non-transiting hot Jupiters
 - Interferometers can see hot Jupiter systems as high contrast binaries

Table 1. Hot Jupiter candidates for CHARA-MIRC

GeorgiaStateUniversity

Precision requirement: < 0.18° for the highest resolution channel

LESIA

vatoire

Observatoire

servatoire

Closure phase precision - v And

Closure phase precision - υ And

Calibration Problems

• Closure phase drifts due to polarization or dispersion

Closure phase drifts

Closure phase is not a strong function of Hour Angle

Closure phase drifts

NASA Exonlanet Science Institute

Closure phase drifts

• Can be corrected by a quadratic surface function of Altitude and Azimuth

After new calibration

Polarization test

Visibilities look really good

Polarization test

Dispersion may also be the cause of the slope drift (red lines)

GeorgiaStateUniversity

Data Analysis Method

- Orbital parameters: i, Ω
- Day/night flux variation: amplitude, phase
- Closure phase offset
- \Rightarrow Combined solution of multiple channels and nights
- \Rightarrow Testing on Eps Per and Ups And
 - more data needed

- Calibration
- Data analysis
- Throughput CHARA
- Efficiency Photometric Channel (Che et al. 2009)
- Sensitivity CHAMP (Monnier et al. 2009)

All improvements add together: \Rightarrow 10x S/N

Future Work

- More investigations on calibration method
 - Use slit and grism to test the dispersion hypothesis
- More observations with high contrast binaries and Ups And with:
 - CHAMP + Photometric Channel (this year)
 - Calibrators at the same declination
 - New observing and calibration scheme

Backup slides

Polarization test

- Observations with polarizer last Fall
 - Visibilities look really good
 - Closure phases look similar as before
- ⇒ Polarization is most likely not the major cause of closure phase drift
- \Rightarrow Possibly due to dispersion effects
 - ongoing tests with slits, more in 2010

Hot Jupiters

Hot Jupiters

Hot Jupiters

• Day/night flux variation, heat redistribution, etc.

