CHARA Collaboration Year-Six Science Review

Self-Calibrating Multiple Systems

David O'Brien Harold McAlister GSU/CHARA

Outline

- Overview
- Side-lobe interference problem
- HD 157482 & CHARA 96

Project overview

- Find hierarchical triple systems where:
 - the close binary and the wide component are at a suitable separation to create two fringe packets
 - the wide component would be a good calibrator for the close binary
- Orbits derived for these binaries will give mutual inclinations between the close and wide orbit

Current Progress

- Main target list
 - HD 157482: Paper submitted
 - HD 3196, 35411, 193322 (CHARA 96), 206901: Orbit fitting in progress
 - HD 98353, 107259, 129132: data reduction in progress
 - HD 115955 & 163151: new SFP discoveries!

Current Progress

- Auxiliary targets:
 - Recently, bracketed observations of 2 targets were conducted when their SFPs were too far apart to observe simultaneously
 - Expanded target list to include wider separations; 40 new possible SFP system found using the Multiple Star Catalog
 - 11 of those 40 attempted; no new SFP systems detected

Side Lobe Interference

• Side-lobe interference between primary and secondary packets is present in some data

LESIA

Observatoire

Vratio = 1

Vratio = 1.5

Vratio = 2

Vratio = 3

Side-Lobe Interference

- 3 possible methods for correcting
 - Break overall fringe packet into component parts
 - Fit sinusoid to data
 - Fit fringe packets simultaneously

- Use wide orbit of the triple system to determine what the true separation should be.
- Find the combination of visibilities that would interfere to produce the observed result.

GeorgiaStateUnivers

Breaking into components

• Observed:

 $V_{p} = 0.137$ $V_{s} = 0.083$ $V_{ratio} = 1.66$

• Broken into components: $V_p = 0.150$ $V_s = 0.100$ $V_{ratio} = 1.50$

GeorgiaStateUniversity

• Drawback: this method requires extreme precision in the wide orbit

Georgia<u>State</u>University

Fitting a sinusoid

- Over the course of the night, the secondary will move relative to the primary
- Movement may encompass both destructive and constructive interference

Fitting a sinusoid

- The visibility ratio will fluctuate sinusoidally with time, as will the calibrated visibility
- By fitting a sinusoid, the influence of the side lobes can be corrected for

Fitting a sinusoid

- Drawback: Need a lot of data (sometimes several hours worth) to get a full curve
- Also, visibility will change anyway because of baseline rotation and close pair's orbital motion

CHARA Collaboration Year-Six Science Review

GeorgiaStateUnivers

Fitting fringe packets simultaneously

• Expand the equation for fitting a single fringe:

Observatoire

$$I(D) = \phi_0 \frac{\sin(\pi \phi_1 \phi_2 D)}{\pi \phi_1 \phi_2 D} \cos(2\pi \phi_2 \phi_3 D + \phi_4)$$

φ₀: visibility of the packet
φ₁: inverse of the coherence length
φ₂: group velocity of the dither mirror
φ₃: wave number
φ₄: phase shift

Fitting fringe packets simultaneously

• Into:

$$I(D) = \phi_0 \frac{\sin(\pi\phi_1\phi_2 D)}{\pi\phi_1\phi_2 D} \cos(2\pi\phi_2\phi_3 D + \phi_4) + \phi_5 \frac{\sin[\pi\phi_1\phi_2(D - \phi_6)]}{\pi\phi_1\phi_2(D - \phi_6)} \cos[2\pi\phi_2\phi_3(D - \phi_6) + \phi_4]$$

 ϕ_0 : visibility of the left packet ϕ_5 : visibility of the right packet ϕ_6 : separation of the two packets

CHARA Collaboration Year-Six Science Review

HD 157482 (V819 Her Orbit)

Points represent 3-4 data sets averaged together

HD 157482 (V819 Her B) Orbit

Element	Value	Muterspaugh et al. (2008)
Fixed Elements: P (days) $\alpha \sin i (mas)$ e ω (degrees) $\Theta_p (mas)$ $\Theta_r (mas)$	$2.2296334 \pm 1.6 \ge 10^{-6}$ 0.6641 ± 0.0230 0 0 0.126 ± 0.002 0.085 ± 0.002	$2.2296330 \pm 1.9 \ge 10^{-6}$ 0.0041 ± 0.0033 227 ± 47
Varied elements: T_{node} (MJD) α (mas) i (degrees) Ω (degrees) Δm_{close} Δm_{wide}	52626.872 ± 0.039 0.6646 ± 0.0156 87.6 ± 5.5 131.3 ± 2.7 1.24 ± 0.16 1.127 ± 0.037	52627.17 ± 0.29 0.6657 ± 0.0058 80.70 ± 0.38 131.1 ± 4.1 1.38 ± 0.14

Mutual Inclination

• Mutual inclination is the angle between planes of the wide orbit and the close orbit

 $\cos \phi = \cos i_{Close} \cos i_{Wide} + \sin i_{Close} \sin i_{Wide} \cos \left(\Omega_{Wide} \text{-} \Omega_{Close} \right)$

• Can give clues to formation processes of multiple systems

Mutual Inclination

 $\cos \phi = \cos i_{Close} \cos i_{Wide} + \sin i_{Close} \sin i_{Wide} \cos (\Omega_{Wide} - \Omega_{Close})$

$$\begin{split} i_{Close} &= 87.6 \text{ deg} & i_{Wide} &= 56.2 \text{ deg} \\ \Omega_{Close} &= 131.3 \text{ deg} & \Omega_{Wide} &= 143.7 \text{ deg} \end{split}$$

 $\phi = 33.5 \pm 5.5$ degrees (Muterspaugh (2008): $\phi = 26.3$ degrees)

• Sterzik & Tokovinin (2002): This type of mutual inclination suggests a very oblate initial gas cloud with strong initial rotation

Masses

- $P = 2.2296334 \pm 1.9 \times 10^{-6} \text{ days}$
- $a = 0.04572 \pm 0.00300 \text{ AU}$
- $M_{1+2} = 2.565 \pm 0.505 M_{x}$
 - Scarfe et al. (2004): $2.64 \pm 0.08 M_{g}$
 - Muterspaugh et al. (2008): $2.560 \pm 0.067 M_{\pi}$
- $M_1 = 1.487 \pm 0.293 M_{a}, M_2 = 1.078 \pm 0.212 M_{a}$
 - Muterspaugh et al. (2008): $M_1 = 1.469 \pm 0.040 M_{a}$, $M_2 = 1.090 \pm 0.030 M_{a}$

Age

- Individual component K magnitudes determined by values derived for Δm_{close} and Δm_{wide} , and overall K magnitude from Muterspaugh et al. (2008)
- V magnitudes adopted from Scarfe et al. (2004)

	AB	В	А	Ba	Bb
$M_{ m V}$ $m_{ m V}$			$\begin{array}{c} 1.92 \pm 0.04 \\ 6.11 \pm 0.05 \end{array}$	2.63 ± 0.07 6.82 ± 0.08	$\begin{array}{c} 4.08 \pm 0.16 \\ 8.27 \pm 0.16 \end{array}$
$m_{\rm K}$ V - K	4.1 ± 0.22	5.55 ± 0.22	4.43 ± 0.23 1.68 ± 0.23	5.86 ± 0.22 0.96 ± 0.23	7.10 ± 0.25 1.17 ± 0.30

CHARA 96 (Preliminary Orbit)

CHARA 96 Masses

- Wide spread in values for parallax
 - 1. Hipparcos: 472 pc
 - 2. Roberts et al. (2010): 741 pc
 - 3. Mason et al. (1998): 1200 pc
- So, much wider spread in masses
 - 1. $M_{1+2} = 3.20 M_{\tt m}$
 - 2. $M_{1+2} = 12.39 M_{\pi}$
 - 3. $M_{1+2} = 52.63 M_{\pi}$
- Spectroscopic orbit of McKibben et al. (1998) suggests $M_{1+2} = 38 M_{\pi}$

