

Be star observations with CLASSIC and MIRC

Yamina Touhami GSU/CHARA

Thesis advisor:

- Dr. Douglas Gies (GSU)

Collaborators:

- Carol Jones (U. Western Ontario)
- Chris Tycner (Central Michigan)
- John Monnier (U. Michigan)
- Rafael Millan-Gabet (NexSci)
- The CHARA Crew

Outline

- The status of the project
- Observations of Be Stars with CHARA Classic and MIRC in 2009
- Classic Results
- Delta sco and Chi oph with MIRC
- Fluor observations of Rho cas
- Conclusions and futue work

Thesis project updates

- A survey of 25 Be stars in the K- band
- Project started in 2007: 90% of the project accomplished so far
- The Brighter ones observed with MIRC
- Simultaneous spectroscopic results from Lowell and IRTF published in Touhami et al. 2009
- Predicted Angular Diameters from the emission line equivalent width

SEDs and Spectroscpoic Survey

LESIA

NASA Exonlanet Science Institut

Observatoire

Iounami et al. 2009

atoire

EW-IR excess Correlation

	_					
Our sample sta	Our sam		$ \begin{array}{c} E^{\star}(V-K) \\ (mag) \\ (4) \end{array} $	$ \begin{array}{c} E^{\star}(V-H) \\ (mag) \\ (3) \end{array} $	Year (2)	Star (1)
	- 30	$0.51 (9) \dots$	$0.15 (9) \\ 0.10 (9)$	-0.12 (9)	$2006 \\ 2008$	HD004180 HD004180
15 —	- 15	1.04(31)	0.61 (31) 0.66 (31)	0.36 (31)	$2006 \\ 2008$	HD005394 HD005394
-	-	0.49 (6)	-0.01 (6) 0.11 (6)	-0.13 (6)	2006	HD010516
	(uni	0.67(5)	0.30(4)	0.09 (5)	2006	HD022192
10 - 	°01 − +) (1 0	0.03 (12)	0.00 (12) 0.05 (12)	0.03 (12)	2000 2006 2008	HD023630
	(Hu1•	0.21 (9)	0.07 (9)	0.05 (12)	2006	HD023862
5 - ^{v C} 48 Per -	A - 5-	1.46 (29)	1.01 (29)		2008	HD023862
βPsc	-	0.36(7)	$\begin{array}{c} 0.07 \ (7) \\ 0.12 \ (7) \end{array}$	-0.01 (7)	$2006 \\ 2008$	HD025940 HD025940
$0 \begin{bmatrix} \pi & \text{Aqr} & 28 \\ 28 & \text{Cyg} & \underline{-1} & \pi & \text{Aqr} \\ 28 & \text{Cyg} & \underline{-1} & \pi & \text{Tau} \\ \pi & \text{Tau} & \pi & \text{Tau} \end{bmatrix}$	0	0.84(4)	$\begin{array}{c} 0.51 \ (4) \\ 0.52 \ (4) \end{array}$	0.30 (4)	$2006 \\ 2008$	HD037202 HD037202
-0.5 0.0	-0.5		0.10 (4)	0.08(4)	2008	HD058715
		-0.18 (11)	-0.21 (11)		2006	HD191610
		1.09 (11)	0.68(11)		2006	HD200120

l'Observatoire

LESIA

Our sample stars are currently in active states except for Zeta oph and Alcyone

Touhami et al. 2009

vatoire

Modeling the visibilities: Disk geometry

• Uniform disk star with a set of initial physical parameters: $(M_s, R_{s, T_{eff}}, \pi,)$

$$\begin{cases}
\rho(\mathbf{r}, \mathbf{z}) = 0, \ r < r_0 \\
\rho(\mathbf{r}, \mathbf{z}) = \rho_0 (r/r_o)^{-n} \exp(-1/2(z/H)^2), \ r > r_0
\end{cases}$$

• Temperature profile is distance-dependant

 $T(r) = T_0 (r / r_0)^{-q}$

• Considering the free-free and bound-free opacity, the total flux is given by:

$$F_{\nu} = \frac{\kappa_{\nu}}{D^2} \iint B_{\nu}(T(r)) \rho^2(r, z) r \, dr \, d\theta \, dz$$

Classic: Results-1

Classic: Results-3

Classic: Results-4

List of observed Be stars

HD	HR	RA(2000)	DEC(2000)	v	R_s	T_eff	WHa th_d th	n_J	Name 1	Nobs
10938	7 4787	12 33 28.9	+69 47 17.7	3.88	0.405	14174.	-20.3 3.92	0.72	kapDra	6
13874	9 5778	3 15 32 55.8	+31 21 32.9	4.15	0.338	14440.	2.8 1.21		the_CrB	2
14292	6 5938	3 15 55 30.6	5 +42 33 58 . 3	5.74	0.180	12060.	-7.3 1.45		4Her	8
14298	3 5941	15 58 11.4	-14 16 45.7	4.94	0.211	17790.	-24.1 1.88	0.67	48Lib	12
14327	5 5953	3 16 00 20.0	-22 37 18.2	2.29	0.484	27000.	-8.0 2.17		del Sco	MIRC
14818	4 6118	3 16 27 01.4	-18 27 22.5	4.42	0.390	30700.	-37.6 3.17	1.12	chi Oph	MIRC
16428	4 6712	2 18 00 15.8	+04 22 07.0	4.64	0.260	21650.	-7.5 1.30	0.74	660ph	13
16601	4 6779	18 07 32.6	+28 45 45.0	3.84	0.530	9800.	6.7 2.17		omiHer	17
19818	3 7963	3 20 47 24.5	+36 29 26.6	4.53	0.340	13925.	4.7 0.99		Lam Cyg	3
14975	7 6175	5 16 37 09.4	-10 34 02.0	2.56	0.494	28610.	-3.0 1.55		Zeta oph	MIRC
20012	0 8047	20 59 49.5	+47 31 15.4	4.69	0.221	23870.	-12.3 1.22	0.40	59Cyg	13
20290	4 8146	5 21 17 55.0	+34 53 48.8	4.32	0.266	20460.	-22.8 2.14	1.26	upsCyg	17
20346	7 8171	21 19 22.2	+64 52 18.7	5.19	0.200	17087.	-25.4 1.86	0.57	6Cep	27
20940	9 8402	22 03 18.8	-02 09 19.3	4.70	0.301	12770.	-18.0 3.09	0.94	Omi Aqr	29
21207	6 8520	22 21 31.0	+12 12 18.7	4.72	0.150	23340.	-23.8 1.12	0.52	31Peg	5
21767	5 8762	23 01 55.3	+42 19 33.5	3.63	0.480	14140.	4.7 1.36	0.52	OmiAnd	22
21789	1 8773	3 23 03 52.6	+03 49 12.2	4.37	0.280	13530.	-11.7 2.31	1.27	betaPsc	45
HD	HR	RA(2000)	DEC(2000)	v	R_s	T_eff	W_Ha th_d	th_J	Name 1	Nobs
00410	0 0102	00 44 42 5	. 40 17 02 7	4 4 2	0 600	14400	21 2 7 24	1 00		
00418	0 0193	00 44 43.3	+48 17 03.7	4.43	0.600	14400.	-31.2 7.24	1.89	Omitcas	44
00539	4 0264	00 56 42.5	5 +60 43 00.3	2.29	0.450	30240.	-32.5 3.43	1.48	gamcas	35
01051	0 100	01 43 39.0	+50 41 19.4	4.09	0.264	28760.	-28.8 1.95	0.89	pniper	49
02219	2 108/	03 36 29.3	48 11 33.5	4.25	0.349	16840.	-40.1 4.24	1.00	psiPer	32
02363	0 1165	03 47 29.0	+24 06 18.5	2.87	0.719	12410.	-2.7 4.67	1.84	Alcyone	34
02386	2 1180	03 49 11.2	+24 08 12.2	4.96	0.262	12890.	-15.4 2.53	0.75	Pleione	16
02453	4 1209	03 55 23.1	+31 02 45.0	6.10	0.084	28000.	-24.4 0.58		XPer	2
02594	0 1273	3 04 08 39.6	+47 42 45.0	3.96	0.387	16720.	-26.6 3.81	1.58	48Per	36
03720:	2 1910	05 37 38.7	+21 08 33.2	3.03	0.430	20050.	-20.2 3.30	0.66	zetaTau	43
05871	5 2845	5 07 27 09.0	+08 17 21.5	2.89	0.733	11740.	-1.8 4.86	1.97	betaCMi	28

LESIA

MACA Exonlanat Science Institut

l'Observatoire

MIRC observations of Be stars

Fluor Observations of Rho Cas

Primary results: * High presicion estimate for the angular diameter Θ = 1.826 ±0.005 mas

* High IR excess from model matches current observations

* First estimate of the shell density determined at constant effective temperature: 1.17 x 10-¹⁰ g/cm³ consistent with spectroscopic results.

GeorgiaStateUniversi

Ongoing and Future Work

- Continue the observations to complete the survey: gain in sensitivity with the CLIMB and CHAMP
- Another contemporaneous spectroscopy run for monitoring Be stars from Lowell
- Time evolution of disks: *follow time variations in the visibility measurements to constrain mass loss*
- Finding structures in disks with MIRC: *asymmetries*, *spiral arms*
- Explore signatures of companions

Thank you..

toire