

<u>Be stars observations</u> with VEGA/CHARA

Omar Delaa : PhD, Observatoire de la Côte d'Azur

Philippe Stee : Observatoire de la Côte d'azur Juan Zorec : Institut d'Astrophysique de Paris VEGA consortium

VEGA / CHARA in the French Astronomical

<u>revue "Ciel Et Espace" !</u>

Chara, l'interféromètre télécommandé

Au sommet du mont Wilson, en Californie, l'interféromètre Chara a atteint sa vitesse de croisière. Il est aujourd'hui le plus puissant à observer les étoiles en lumière visible. Un succès du en partie aux astronomes français qui l'utilisent à distance, depuis la Provence.

0320)

Philippe Henarejos

REPORTAGE

comme un crista la é quint: Au: dessus de nos tites, la dite étable, partainement transpo- nor la babelle de cons tites, la comme de constance de la constance de commits agendés villumine régu- rement d'éculars. Le roundement du unserre, élocatfé par la distance, ne ionne que longremp spirs. Mai si L. Zasase, en cette mui du 65 novembre, de est pur J. Vecolletes conditions or observer les astrus. Las en Californis ce n'et pas tout aist en chaire chose. Denis Mourard, rooma à l'observative de la Côte	d'ani distrutt sur la voite celleste, il affiche une ministe contrariefe. Il est presque 2.1.000, donq acim Provence la unite est combée depuis 5 hences, la unome Wilson, sur les hauteurs de Los Angeless. En principe, c'at le moment où s'accreue les compaises de l'obser- viorite dans la quelle Editori Hubbles découvert l'espansion de l'Univers. Mais, en retournant dans la docue chaleur de la salle de contrible. Densis Mourned nes betres gabre d'Illaisons. Sur son éerm d'ordinateur quelques mois en angible l'uterdend tain sur-
--	--

Centre névralgique de Chara : le bâtiment des lignes à retard. Sur des rails de 44 m de long, les faisceaux optiques en provenance des six télescopes de 1 m de diamètre sont égalisés pour pouvoir être réunis en un même foyer, où se trouvent les instruments scientifiques.

Problematic around Be Stars

What is the Origin of the formation of disk around Be stars ?

Five physical mechanisms possible :

Rotation

Binarity

Constrain the Geometry and kinematic of the disk by spectro - interferometry

Disk Geometry and kinematic of three Be Stars

Stee & Meilland (2009), VLTI / MIDI

Equatorial Disk				
	α Arae	$\kappa \ \mathrm{CMa}$	Achernar	
Stellar	$97 \% V_c$	$52 \% V_c$	$\sim \mathrm{V}_{c}$	
Rotation				
Disk rotation	0.48	0.3	no disk detected	
$(\beta \text{ parameter})$	(quasi Keplerian)	(sub Keplerian)	in 2000	

Fast Rotation + other physical processes (Binarity ?)

Fast Rotation for the formation and binarity for dissipation of the disk

Ha line more intense than Bry line 🗲 Study in the visible Wavelength

Georgia<u>State</u>University

VEGA/CHARA Targets

ψ Per	Vsini = 297 km/s	B5Ve	d=214 pc
γ Cas	Vsini = 243 km/s	B0 IVe	d=187 pc
48 Per	Vsini = 198 km/s	B3 Ve	d=169 pc
χ Oph	Vsini = 139 km/s	B1.5 Ve	d=150 pc

vatoire

CHARA Collaboration Year-Six Science Review

: Disk orientation

Model

Star + Circumstellar disk only in rotation
Modeling of Visibility and phases as function of wavelength
Output parameter :
Stellar Inclination, Stellar radii, Øenv in line,Øenv in continuum, P.A.

LESIA

Kinematic of the disk :

 $V_{\phi} = V_{rot} \cdot \left(\frac{r}{R_{\pm}}\right)^{\beta}$

GeorgiaStateUnivers

- **f** = Distance to the center of the
- V_{rot} = Stellar rotational velocity
- R_{\star} = Stellar radius

=Free parameter

48 Per results around Hα line

48 Per parameters around Ha line

inclinatio n (deg)	R star (Rsolar)	Ø _{env} in line (Rstellar)	Ø _{env} in continuum (Rstar)	P.A. (degree)	% of emission scattered in the line
30 ± 5	4.8 ± 0.5	10 ± 2	<u>ج</u>	125 ± 5	40 ± 5

Stellar rotational velocity	Exponent β of the rotational
(km/s)	velocity law
440 ± 50 (Critical velocity)	-0.5 ± 0.1

<u>Disk in Keplerian rotation</u>

w Per results around Ha line

Limitation of the model

Conclusions on Be stars study

- 48 Per :
 - Fast rotation (critical velocity)
 - Disk in Keplerian rotation
 - \rightarrow Consistent with α Arae study
- Psi Per
 - Fast rotation (critical velocity)
 - Disk doesn't appear in Keplerian rotation (Not consistent with the previous results on 48 Per and αArae)
 - \rightarrow Limitation of the model
- χ oph and γCas : poor uv coverage plan

Perspective on Be stars

- Complete the uv coverage plan for χ Oph and
 - y Cas (Data remain to be reduced)
- Precise modeling with SIMECA code
- Long baselines observation of y Cas in the continuum :
 - Photospheric size of γ Cas

GeorgiaStateUniver

• Contribution of the envelope

First interferometric CHARA/VEGA observations of the Be stars 48 Per, χ Oph, γ Cas, and ψ Per

O. Delaa¹ et al.

¹ Lab. H. Fizeau, CNRS UMR 6525, Univ. de Nice-Sophia Antipolis, Obs. de la Côte d?Azur, Avenue Copernic, 06130 Grasse, France

Observatoire LESIA

Observations of interacting massive stars with CHARA/VEGA

Massive binary systems

• **upsilon Sgr,** binary system harboring an hydrogen deficient star (HdB star)

beta Lyr: binary system with current mass-exchange

since 2008

VEGA/CHARA interferometric observations 2T, B = 34

mains goals

Shape and size of the Hα emitting region ?
 Morphology of the binary system?

υ Sgr: O. Chesneau, D. Bonneau, P. Koubsky, D. Mourard , P. Stee β Lyrae: D. Bonneau , O. Chesneau, D. Mourard , P. Stee

Base S1S2 MR 656 – 487 nm Four orbital phases

Preliminary results

> In the continum β Lyr is unresolved at any orbital phase

 \succ Ha: significantly resolved at any Φ_{orb} , photocenter shift correlated with Φ_{orb}

 \rightarrow H β : resolved at some Φ orb, suspicious of photocenter shifts

HeI (6678 A) : marginally resolved at any $\Phi_{orb,}$, no clear photocenter shift detected

"Spectro-interferometric observations of interacting massive stars with VEGA/CHARA" D. Bonneau, O. Chesneau, D. Mourard & P. Stee, Presentation at the conference "Binaries - Keys to comprehension of the Universe, Brno, 8-12 June 2009, to be published in ASP Conference Series.

GeorgiaStateUniversity

Differential Spectral analysis of *β* Lyrae observations

▶ source slightly resolved in Hα with V_{line} / V_{cont} = 0.75 ± 0.08
 ▶ slight differential phase offset in Hα with $\varphi_{diff} = +15$ ° ± 5°

bservatoire LESIA

Differential Spectral analysis of β Lyrae observations

Analysis of the β Lyrae data

Model of the photocenter position in V-band computed from Ak et al. (2007)

Comparison with the work done with NPOI

Paper in preparation Bonneau et al

Los Angeles from Mount Wilson Observatory

THANK YOU

David Jurasevich