CHARA Collaboration Year-Six Science Review

FLUOR Instrumentation

by Benjamin Mollier

Short description of FLUOR

- FLUOR is a singlemode fibers recombiners
- Works in K-band $(2 2.4 \mu m)$
- Singlemode fibers :
- Pupil phase corrugations
- \rightarrow intensity fluctuations
- Easier calibration
- Piston not filtered
- 4 outputs

GeorgiaStateUnivers

- 2 photometric channels
- 2 interferometric channels OPD modulation

Temporal relevance of FLUOR

- Complementarity FLUOR and other CHARA instruments
- What is the niche of FLUOR ?

	Visible	near-IR	mid-IR
Imagery	NPOI	VLTI/Amber CHARA/MIRC MROI VLTI/Gravity	
High-Dynamic	CHARA/VEGA	CHARA/FLUOR	VLTI/MIDI LBT/Nuller Kech-I/Nuller
-			

+ Maturity, accessibility, long baseline, data simplicity

bservatoire LESIA

Why JOUFLU?

(Rejuvenation and upgrading of FLUOR)

- FLUOR has not changed since IOTA
- We must adapt FLUOR to the environment CHARA
 - Being able to follow evolution of CHARA
 - Being able to connect to other subsystem (VEGA, CHAMP)
- Remote observing on a routine basis

Increase dynamic

- Currunt dynamic is arround 300
- Dynamic is limited by some bias :
 - Piston
 - Chromatic bias
 - Number of scans
 - Solutions :

GeorgiaStateUnivers

- Fringe tracking
- Spectral dispersion
- Faster observation sequences

bservatoire

LESIA

Mérand et al. 2006, A&A 453, 155

Spectral resolution

- Implement spectral resolution : 2 options
 - Prism
 - Double Fourier mode
- What it implies ?
 - Greater coherence length \rightarrow change fast scan
 - Need phase stability \rightarrow CHAMP connection

FT from CHAMP

- We need to stabilize fringes
 - Long exposure
 - Reduce phase error
 - No piston for double fourier interferometry
- \rightarrow Increase spatial and spectral resolution
- Idea : Use CHAMP
- Is it possible that CHAMP work with only 2 telescopes ?

Remote mode, automatisation

- Automatisation of ALIU (Aligment procedure)
 - 2 goals :

GeorgiaStateUnivers

- Limit number of intervention in the lab.
- Implement remote mode

Pupil from VEGA

- New in ALIU : Alignment of pupils
- Why ? CHARA's pupil move during the night
 → Flux can fall suddenly
- Problem : FLUOR cannot image the pupil
- Idea : Use pupil location system of VEGA

New control system

Take home message

- Increase dynamic from 300 to higher as possible
 - Spectral resolution
 - Fringe tracking (CHAMP)
- Connect with VEGA
 - Imaging pupil
 - Simultaneous multicolor observations with VEGA

bservatoire LESIA

- Automatisation of alignment procedure
 - Remote mode

GeorgiaStateUniv

- New control system
 - Follow evolution of CHARA
 - Connect to CHAMP, VEGA...

CHARA Collaboration Year-Six Science Review

