VEGA: Status and Future Plans

Denis Mourard, Karine Perraut, Omar Delaa, Nicolas Nardetto, Philippe Bério, Jean-Michel Clausse, Olivier Chesneau, Isabelle Tallon-Bosc, Daniel Bonneau and Philippe Stee

FIZEAU-Nice, LAOG-Grenoble, CRAL-Lyon

- Huge effort on data processing
- Publication on principle and performance
- First science results
 - High spectral resolution: Deneb, Rigel.
 - Faint objects: AB Aur
 - New programs on fundamental parameters: 13 Cyg, ro Ap
 - "Classical" programs: Be stars, binaries

Nights 2009: not a great success

- 25 nights over 56: Gloom, fire, weather.
- Some troubles with the internal fringe tracker.
- Lot of programs but troubles with processing.

But:

- Good operations also in remote. Control system is now stable.
- Alignment is very stable.
- Good progress on the pupil shapes. Images...

Status of programs

2008: 29 nights with data 2009: 25 nights with data Total=54 nights*~8h=432h

27 programs, 44 objects, 421 measures 1 measure = 1 hour for Cal-Tar-Cal + Spectral Calibration

Summary of the VEGA Science Programs

- First priorities
 - A/B Supergiants (Chesneau): see later
 - AB Aur (Perraut): see later
- Circumstellar environments (see Omar's presentation)
 - Four Be stars
 - ups Sgr and bet Lyr
- Fundamental parameters (see Nicolas's presentation)
 - 13 Cyg
 - bet Cep
 - ro Ap stars
 - sub giants
- Then: eps Aur, alp Cep, P Cyg, theta OriC...

Status of the Science Programs

Number	Title	Nights	Data	Processing	Quality	Analysis	Publication
V08	DenebRigel	12	20	100%	Good to excellent	Done	almost submitted
V12	HaeBe	13	15	50%	Medium	In progress	In preparation
Vxxx	del Sco, Chi Oph, Be	24	58	100%	Medium	Done	almost ready
V11	bet Lyr/Ups Sgr	14	30	75%	Good	In progress	In preparation
V27	eps Aur	2	9	100%	Good to excellent	Standby	In preparation
V01	13 Cyg	8	12	100%	Good	Done	
V03	bet Cep	11	21	100%	Medium to excellent	More data	
V06	HD49933	5	8	100%	Bad	New data	
V23	del Cep	3	7	100%	Bad		
V02	Sirius	3	3	50%	Good	Standby	
V16	ro Ap	7	9	50%	Good	In progress	
V28	theta OriC	4	10	50%	good	Standby	
V30	P Cyg	3	5	50%	Medium	Standby	
V31	Fast rotators	5	36	50%	Good	Standby	
V22	sub Giant	16	33	30%	Good	Partly done	

ESIA

l'Observatoire

Status of VEGADRS

- Pipeline is now defined with a small number of modes
 V²(t), V², Ve^{iφ}
- Still some parameters to adjust depending on SNR
 - Number of frames
 - Spectral width of science channel
- Main limitations in the processing
 - Photon centroiding hole in V² mode. Low V².
 - Accurate spectral calibration in High Spectral Resolution.
 - OIFITS output in $Ve^{i\phi}$ mode.
 - Post-processing tools for handling large amount of individual data.
- Main limitations in the data
 - Phase noise residual
 - Group delay tracking
 - Saturation of detector in photon counting regime

Summary of performances (A&A 508 2009)

Grating	R	$\Delta\lambda$ (Blue)	$\Delta\lambda$ (Red)	$\lambda_R - \lambda_B$
R1: 1800 gr/mm	30 000	5 nm	8 nm	25 nm
R2: 300 gr/mm	5000	30 nm	45 nm	170 nm
R3: 100 gr/mm	1700	100 nm	150 nm	not possible

Spectrograph Characteristics

Resolution	R	Typical lim. magnitude	Best perf.
Low	1700	6.8	7.5
Medium	6000	6.5	7.5
High	30 000	4.2	5.5

Limiting magnitude

δ	HA(h)	$\lambda(nm)$	$V_{ m Nat}^2$	$V_{\rm High}^2$	$V_{ m Low}^2$
29° 29°	[0;+5] [0;+5]	640 650	$\begin{array}{c} 0.36 \pm 0.02 \\ 0.34 \pm 0.03 \end{array}$	$\begin{array}{c} 0.34 \pm 0.02 \\ 0.36 \pm 0.02 \end{array}$	0.36 ± 0.03 0.38 ± 0.04
52° 52°	[-1;+4] [-1;+4]	640 650	$0.40 \pm 0.04 \\ 0.38 \pm 0.03$	$\begin{array}{c} 0.34 \pm 0.03 \\ 0.38 \pm 0.03 \end{array}$	$0.38 \pm 0.02 \\ 0.44 \pm 0.01$
63° 63°	[-1;+4] [-1;+4]	640 650	$\begin{array}{c} 0.26 \pm 0.01 \\ 0.28 \pm 0.01 \end{array}$	$\begin{array}{c} 0.24 \pm 0.01 \\ 0.28 \pm 0.02 \end{array}$	0.24 ± 0.02 0.28 ± 0.02

Georgia<u>State</u>University

Observatoire

LESIA

Submitted soon

O. Chesneau¹, L. Dessart² D. Mourard¹, Ph. Bério¹, Ch. Buil³, D. Bonneau¹, M. Borges Fernandes¹, J.M. Clausse¹, O. Delaa¹, A. Marcotto¹, A. Meilland⁴, F. Millour⁴, N. Nardetto¹, A. Roussel¹, K. Perraut⁵, A. Spang¹, P. Stee¹, I. Tallon-Bosc⁶, H. McAlister^{7,8}, T. ten Brummelaar⁸, J. Sturmann⁸, L. Sturmann⁸, N. Turner⁸, C. Farrington⁸ and P.J. Goldfinger⁸

Interests in the visible of A/B supergiants (e.g. Deneb A2Ia, and Rigel B8Ia):

- Very bright and used as stellar candles,

- large diameters (60-100 solar radii), Deneb and Rigel are 2-3mas sources

- Variability in H α line (R>10000), sensitive to mass-loss and its perturbations, time scale weeks to months.

1993

1994

Letter to the Editor

Submitted soon

The H\$\alpha\$ line forming region of AB Aur spatially resolved with VEGA/CHARA *

K. Perraut¹, S. Rajabi^{2,3}, M. Benisty³, D. Mourard⁴, F. Bacciotti³, Ph. Bério⁴, D. Bonneau⁴, O. Chesneau⁴, J.M. Clausse⁴, O. Delaa⁴, A. Marcotto⁴, A. Roussel⁴, A. Spang⁴, Ph. Stee⁴, I. Tallon-Bosc⁵, H. McAlister^{7,8}, T. ten Brummelaar⁷, J. Sturmann⁷, L. Sturmann⁷, N. Turner⁷, C. Farrington⁷ and P.J. Goldfinger⁷

AB Aur is a **prototype of Herbig Ae/Be stars** and, as such, it has been fully observed in spectroscopy, in infrared interferometry (PTI, IOTA, ...)

- Spectral type : A0
- Magnitudes : V = 7.1 / K = 4.4
- Distance : 144 pc
- Luminosity : 47 L_{\odot}
- Large infrared excess
- No jets, no CO flow
- Variability of the H α emission at a scale of a few hours

Fukagawa, 2004. Subaru

VEGA observations

0.2

V2

Ηα

13

- 2008. S1S2: Clear spatial resolution of AB Aur in Hα
- 2008. W1W2: Fringes but SNR too poor

Future plans

• Publications

- Improved processing
- Tracking
- Stability and optimization of the instrumental visibility
- Better ergonomics of VEGA in general

l'Observatoire LESIA

GeorgiaStateUniversi

Saturation effect in the emission lines

Improved algorithm will be necessary: need to record more and larger sub-images and develop an optimized post-processing.

We plan some tests of EMCCD detectors that could be used in the future in the bright flux regime.

Work on tracking

• Bad behaviour of the internal group delay tracking. Need some improvements.

Instrumental visibility

Calibrator of eps Aur, on 2009 november 17th

The idea is to take time to test that in different conditions:

- integration time of the tip/tilt (fast piston noise?)
- effects of OPLE position?
- effects of external perturbations?

Ergonomics of VEGA

- Preparation is fine, for 2T.
 - New plans for 3T with improved performances (via JMMC and new ASPRO software).
- Night scheduling is horrible:
 - different strategies, important number of observing blocks, experience of observers.
 - Needs are identified but nobody for doing that!
 - Two levels: during the preparation and at the time of observations.
 - Similar needs on other instruments?
- Automatic fast processing at the end of the night.
 - Should be operational by the summer.
 - The idea is an automatic quality check with results stored in the database.
- We are starting a kind of VO tool aiming at managing all information and software related to VEGA observations.
 - Prototype by the end of 2010 if funded.

Conclusions

Continuous efforts on data processing.

Better focus on specific and unique science programs.

Better ergonomics of VEGA for a wider use inside the CHARA group.

Develop the VEGA and CHARA communications for a better operation.

Thanks to CHARA team Hal, Theo, Judit, Laszlo, Nils, Chris, PJ, Gail, Steve and Larry

