Keck Interferometer: A status Update

Sam Ragland
Presentation sequence

1. Introduction
2. Operational capabilities
3. Science operations
4. Science highlight
5. Future Plans
1. Introduction

- Two Keck 10m telescopes w/ 85m baseline
- Visibility-square (1.65, 2.2 & 3.8 μm) & Nulling (10 μm) measurements
- Keck Interferometer (KI) is funded by NASA
 Joint development among JPL, WMKO, and NExScI
- Demonstrated good reliability of the instrument (> 90% uptime)
- NSF-funded ASTRA project in process of delivering new capabilities
2. Operational Capabilities (Slide 1 of 4)

- KI is the most sensitive IR interferometer on the planet with unique operational capabilities, but limited in terms of uv coverage.

<table>
<thead>
<tr>
<th>KI Capabilities</th>
<th>Current performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nulling mode</td>
</tr>
<tr>
<td>2</td>
<td>V^2- K5 ; R~27</td>
</tr>
<tr>
<td>3</td>
<td>V^2- K10 ; R~54</td>
</tr>
<tr>
<td>4</td>
<td>V^2- K42; R~230</td>
</tr>
<tr>
<td>5</td>
<td>V^2-SPR; R~1700</td>
</tr>
<tr>
<td>6</td>
<td>V^2- H4; R~22</td>
</tr>
<tr>
<td>7</td>
<td>V^2- L10; R~63</td>
</tr>
<tr>
<td>8</td>
<td>V^2- K/L</td>
</tr>
<tr>
<td>9</td>
<td>V^2-DFPR</td>
</tr>
</tbody>
</table>

Adaptive optics and Angle tracking limit
- AO sensitivity: $R < 12$
- KAT sensitivity: $J/H < 10.5$ ($H < 9$ for SPR & $H < 13$ for DFPR)

Modes offered for shared-risk science are highlighted in red.
2. Operational Capabilities (Slide 2 of 4)

Self-Phase Referencing (SPR) mode

- Spectral resolution of \(~ 1700\) in K-band for \(K' < 7\)
- Commissioned ASTRA Self-phase referencing mode and offered as a fully operational science instrument for semester 2010B

- Fast Servo
- Closed loop feed-back
- Open loop feed-forward

- Slow Servo
- Limited feed-back
- Long integration times
- High Spectral Resolution
L-band & Simultaneous K/L Modes

- L-band instrument is an unique capability
- In the process of commissioning these two modes
- Offering these modes for shared-risk science in semester 2010B
2. Operational Capabilities (Slide 4 of 4)

Dual Field Phase Referencing (DFPR) mode

- Measurements up to $K \sim 12$ (ultimately to $K \sim 14$) when suitable nearby reference star is available within 25” field
- Offering ASTRA Dual-field Phase Referencing (DFPR) mode for shared-risk science in 2010B

- Fast Servo
- Closed loop feed-back
- Open loop feed-forward

- Slow Servo
- Limited feed-back
- Fainter magnitude limits
Observations with KI are supported with service observing and pipeline data reduction through all phases of the project.

Demand for KI remains high with 6-8 (2 telescope) nights allocated per semester from TACs with oversubscriptions rates from as high as 5 (NASA) to 8 (NOAO/TSIP).

2 year statistics: lost ~ 1/4th of sky time to bad weather.

Science topics in last 2 years:
- Young stellar objects
 - T Tauri, Herbig, FU Oris and massive YSO disks
 - Stellar mass
- Circumstellar material around Cepheids
- Circumstellar material around main sequence stars
- Dust in AGNs
Observing run schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 28</td>
<td>0.5 night ASTRA eng.</td>
</tr>
<tr>
<td>Oct 24-27</td>
<td>2.5 nights Nuller & L-band Science</td>
</tr>
<tr>
<td>Nov 6-8</td>
<td>2 nights V2 science</td>
</tr>
<tr>
<td>Nov 23-26</td>
<td>2 nights V2 science</td>
</tr>
<tr>
<td>Dec 13</td>
<td>0.5 night ASTRA eng.</td>
</tr>
<tr>
<td>Dec 29</td>
<td>1 night ASTRA eng.</td>
</tr>
<tr>
<td>Feb 24-26</td>
<td>2 nights V2 science</td>
</tr>
<tr>
<td>Mar 29-30</td>
<td>1.25 nights ASTRA eng.</td>
</tr>
<tr>
<td>Apr 23</td>
<td>0.5 night V2-DFPR sci. + ASTRA eng</td>
</tr>
<tr>
<td>Apr 28-May 1</td>
<td>2 nights V2 science</td>
</tr>
<tr>
<td>May 29-Jun 1</td>
<td>3 nights Nuller & L-band Science</td>
</tr>
<tr>
<td>19-20 July</td>
<td>0.5 night V2-DFPR sci. + ASTRA eng.</td>
</tr>
</tbody>
</table>

Observing run schedule

Past Runs

Future Runs

V² (H, K, L, SPR, DPFR), V²-K/L and Nulling modes are offered in semester 2010B.
3. Science Operations: Nulling Key Science Update

- After completion of the data taking phase for the Nulling Key Science project (Feb 2009), the KI team did a comprehensive analysis to derive the final uncertainties and systematics
 - Detailed description of data collection and analysis published in Colavita et al (2009), PASP, 121, 884
- 8 runs Feb 2008 – Jan 2009: 32 interferometer nights
- Completed the observational phase of the Nuller Key Science exo-zodiacal survey
 - 44 unique targets observed out of 46 submitted
 - 40 targets have no detectable exo-zodiacal dust at limits of several hundred zodi and remain viable candidates for terrestrial planet searches
 - Some data already public and all data will be public in July, 2010
 - Papers in preparation by Key Science team
7 refereed publications since start of 2009

- Spatially resolved spectroscopic observations of 15 young stars in the K-band (Eisner et al. 2009)
 - Detect hot hydrogen gas through Br γ emission line
 - Observations suggest the presence of water vapor and CO gas in the inner disk of several objects
- Interferometric evidence for resolved warm dust in the DQ Tau system (Boden et al. 2009)
 - Suggests the IR excess from this PMS binary system is distributed on the physical scale of the binary orbit (0.1-0.2 AU)
4. Science Highlight (slide 2 of 4)

- First L-band observations of a YSO disk (Ragland et al. 2009)
 - Studied the temperature structures of the inner disks of a Herbig AeBe star though simultaneous K & L measurements
 - Press release in Dec 2009: http://www.keckobskeck_telescopes_take_deeper_look_at_planetary_nurseries
 - http://www.nasa.gov/topics/universe/features/keck-life-zone.html

- 51 Oph: A possible Beta Pictoris analog measured with the Keck Interferometer Nuller (Stark et al. 2009)
 - A two component model: inner disk of blackbody grains and outer disk of small grains was essential to explain the observed KI measurements in conjunction with VLTI-MIDI & Spitzer observations

- Transitional Disks with KI (Pott et al. 2010)
 - Searching for close companions as the reason for dust depletion
 - No companions found
 - Rule out binary companions within specific parameter range
 - All but one target spatially resolved and consistent with hot dust at 0.1 AU inside nominal hole
Exploring the inner region of type 1 AGNs with the KI (Kishimoto et al. 2009)

- Four Type I AGNs – thanks to the recent angle tracking improvements
- These observations partially resolved the dust sublimation region; fit ring radii range from 0.04 to 0.9 parsecs
- Press release in Dec 2009: http://keckobservatory.keck_observatory_interferometer_takes_closest_look_at_supermassive_black_ho/
Kishimoto et al results (Kishimoto et al. 2009)

- The effective radius of these four AGNs, obtained from ring model, is comparable to the light travelling distance for the time lag of the K-band flux variation from the U/V optical variation.
- This is suggest that these interferometric observations probe the dust sublimation region.

Corrected ring radius derived for each KI target (squares), plotted against UV luminosity. Radii from reverberation mapping shown in grey.
5. Future plans

- Complete commissioning of L-band & ASTRA-DFPR modes
 - 1.5 engineering nights to complete DFPR commissioning (March & April) with July night as backup
- Implement ASTRA astrometry mode
 - First astrometric tests starting in July 2010
 - Qualification campaign through 10B

ASTRA Overview
A $2M NSF MRI grant
Performance: July 2006 - July 2010

- Self Phase Referencing
 - K<8 limit
 - R~1800

- Dual Field Phase Referencing
 - K<8.5 reference
 - K<15 science

- Astrometry
 - 30μarcsec for 10” separation

- Young Stellar Objects
 - Chemical Composition at R~1800

- Active Galactic Nuclei
 - Chemical Composition
 - Increased Sample

- Galactic Center
 - Stellar Populations
 - Black Hole Mass
 - General Relativity Effects

- Exoplanets
 - Mass of Known Planets
 - Reflex Motion of Multiple Planet Systems
Summary

- Keck Interferometer (KI) is a high sensitivity IR interferometer with unique operational capabilities
- KI operates for ~ 15 nights per year
 - Demonstrated good reliability of the instrument & operational efficiency is high
- ASTRA-SPR mode has transitioned to facility class instrument
- Commissioning ASTRA-DFPR, L-band & K/L modes
- ASTRA-astrometry mode is under development