

Diameters and Temperatures of Main Sequence Stars

Tabetha Boyajian (GSU / Hubble Fellow)

...and a whole lot of y'all

Interest and motivation

• Fundamental properties of stars

Radius: $f(\theta, \pi)$ Temperature: $f(\theta, F_{BOL})$ Luminosity: $f(F_{BOL}, \pi)$ Mass

Age

- A large, accurate, homogenous set of data
 - Building empirical calibrations/transformations

Georgia State Unive

- Test atmosphere/evolutionary models
- Exoplanet environments (see KvB talk)

Observatoire LESIA

Identifying the sample

- Choose a non-biased sample of normal, main sequence stars to observe
 - Limited to declination >-10 deg
 - Volume limited based on color index
- Qualities of these bright nearby stars are known very well??
 - Distances, photometry (right on, man)
 - Spectral typing, duplicity (so-so)
 - Composition/metallicity, (iffy... but best of all studied bc nearby and bright.) IR photometry (not so much ^(C))

Interferometric observations

- Use multiple wavelengths, baselines and calibrators over several nights
- Fit calibrated visibilities to get *angular diameter*

Spectral Energy Distribution (SED) fits

 Collect flux calibrated photometry from literature and fit to spectral template to get *bolometric flux* and reddening

GeorgiaStateUniversit

Status

- How many we have measured in each category?
 - 9 A stars
 - 25 F stars
 - 18 G stars
 - 9 K stars
 - 14 M stars
 - = 75, and counting...
- How good are the measurements?
 - This data has an average $\delta\theta$ (or δR)~1.5-2% -> δT ~1%
 - In the IR, can resolve star of ~ 0.45 mas to $\sim 4\%$ error
- What is the efficiency of the observing program(s)? I.e., are getting really good at it, but will we ever run out of targets?)

Jurs versus theirs

Table 3:: Comparison of Angular Diameters

Star Name	$ heta_{ m LD}\pm\sigma$ (mas)	Reference	Insturment	Spectral Type	$\Delta heta_{ m LD}/\sigma_{ m C}^{\dagger}$
GJ 15A	0.998 ± 0.007	This work	CHARA	M1.5 V	0.0
	0.988 ± 0.016	Berger et al. (2006)	CHARA*		0.6
	1.027 ± 0.059	van Belle & von Braun (2009)	PTI		-0.5
GJ 33	0.858 ± 0.005	This work	CHARA	K2 V	0.0
	0.933 ± 0.064	van Belle & von Braun (2009)	PTI		-1.2
GJ 105	1.011 ± 0.009	This work	CHARA	K3 V	0.0
	0.936 ± 0.070	Lane et al. (2001)	PTI		1.1
GJ 166A	1.483 ± 0.006	This work	CHARA	K1 Ve	0.0
	1.437 ± 0.039	Demory et al. (2009)	VLTI		1.2
GJ 380	1.198 ± 0.008	This work	CHARA	K7.0 V	0.0
	$1.155 \pm 0.040^{\dagger\dagger}$	Lane et al. (2001)	\mathbf{PTI}		1.1
	1.238 ± 0.053	van Belle & von Braun (2009)	PTI		-0.7
GJ 411	1.405 ± 0.013	This work	CHARA	M2.0 V	0.0
	1.436 ± 0.030	Lane et al. (2001)	PTI		-0.9
	1.439 ± 0.048	van Belle & von Braun (2009)	PTI		-0.7
GJ 526	0.829 ± 0.014	This work	CHARA	M1.5 V	0.0
	0.845 ± 0.057	Berger et al. (2006)	CHARA		-0.3
GJ 614	0.458 ± 0.018	± 0.018 This work	CHARA	K0	0.0
	0.371 ± 0.044	Baines et al. (2008)	CHARA		1.8
GJ 631	0.717 ± 0.011	This work	CHARA	K0 V	0.0
	0.888 ± 0.066	van Belle & von Braun (2009)	PTI		-2.6
GJ 699	0.954 ± 0.005	This work	CHARA	M4.0 V	0.0
	1.004 ± 0.040	Lane et al. (2001)	PTI		-1.2
GJ 880	0.726 ± 0.005	This work	CHARA	M1.5 V	0.0
LUOR	0.934 ± 0.059	Berger et al. (2006)	CHARA		-3.5

All other CHARA = Classic=

in prep.

Ours versus non-direct approaches Solar-type stars

No obvious correlation between predicted diameter and metallicity or color index.

Also seen when comparing these values to semiempirical ones from the literature.

APL99 = Allende Prieto & Lambert 1999; GCS07 = Holmberg et al. 2007, Tak07 = Takeda 2007

Boyajian et al., in prep.

Theory versus observation

• Theory predicts the radius of M-dwarf to be smaller by ~10-15% of what we observe for both single and binary stars.

LEGEND

- Masses for single stars are derived from the K-band mass-luminosity relationship from Delfosse et al. 2000, and assume a 10% error.
- (TOP) The solid black line is a 5 Gyr isochrone from the BCAH98 models (Baraffe et al. 1998) for $L_{mix}=H_p$. In the Kstar regime, the dashed lines are $L_{mix}=1.9$ H_p and solid line $L_{mix}=H_p$.
- (BOTTOM) dotted line signifies zero deviation between observation and model.

Resistance to an easy solution?

Binary Stars Activty (L_X/L_{BOL}) & Rotation

Single Stars Not: Active / Rapidly Rotating

SINGLE stars between ~0.65-0.35 M_{\odot} , we do not neither metallicity or activity explains this discrepancy with model predictions (~10%).

Summary

- This work demonstrates impact interferometry has now on fundamental parameters across the HR diagram in both sensitivity and resolution
 - Limits for precise fundamental parameters main sequence stars lie in their photometry and abundances.
- These two surveys have just begun to establish a foundation for empirical relationships of solar-type dwarfs at the 1% level and late-type dwarfs at the 2% level
- Testing models
 - Models predict properties of solar type stars decently
 - A significant disagreement between models and observations still exist on either side of this boundary where models under predict the radii and over predict the temperatures

