

Multi-wavelength CHARA observations of rapid rotators

--- Regulus with non-standard gravity darkening coefficient

Xiao Che, John Monnier

CHARA Collaboration Year-Seven Science Review Stellar rotation Supergiant γ- ray burst Type II Supernova (MacFadyen & Giant Woolsey 1999) Hole Main Sequence Kerr BH Protostar Disk, Supernova Remnant jet Nebula Neutron Pulsar Recycling Star Beginning Stellar Life End

- Stellar rotation is important at the beginning and end of stellar life
- Why it is overlooked at MS?
 - No complete stellar rotation model is available
 - Unknown inclination angles
 - Most stars rotate slowly

Stellar rotation

• However a large fraction of early type stars show vsini > 100km/s (Abt 1995, 2002)

• Stellar rotation effects (Maeder & Meynet 2000)

- Distort stellar photosphere shape
 - Maximum R_{equ} / R_{pole} could be 1.5 for solid-body rotation
- Temperature varies across the stellar surface due to gravity darkening
- $T_{eff} \propto g^{\beta}$ $\beta = 0.25$ radiative envelopes (Von Zeipel 1924) $\beta = 0.08$ convective envelopes (Lucy 1967)
- evolution, lifetime, abundance...

Previous interferometric study on rapid rotators

- Previous studies focus on A type stars
- One important result:
 - Non-standard gravity darkening coefficients

B

Georgia<u>State</u>University

• Average value across the surface ?

Regulus --- B7V

А

MIRC observation on Regulus

5 nights of MIRC observation on Regulus with CHARA outer array

Target	Obs. Date	Telescopes	Calibrators
α Leo	UT 2008Dec03	S1-E1-W1-W2	θ Leo
	UT 2008Dec04	S1-E1-W1-W2	54 Gem, $η$ Leo
	UT 2008Dec05	S1-E1-W1-W2	θ Hya, $θ$ Leo
	UT 2008Dec06	S1-E1-W1-W2	54 Gem, $θ$ Hya, $η$ Leo
	UT 2008Dec08	S1-E1-W1-W2	θ Leo

Georgia<u>State</u>Universit

2-D stellar surface model

Temperature: 5.T at the pole 6.Gravity darkening coefficient β

$$T/T_{pole} = (g/g_{pole})^{\beta}$$

GeorgiaStateUniversi

w Inclination

Shape: 1.Radius of the pole 2.Angular velocity ω , $\Omega = \omega / \omega_{crit}$

Orientation:

3. Inclination

4. Position angle

Fully radiative envelope: β = 0.25 (von Zeipel 1924) Fully convective envelope: β = 0.08 (Lucy 1967)

Observatoire

LESIA

Gravity Darkening Coefficient: Regulus

Fraction of critical velocity $\omega \approx 0.96$

 $T_{equ} = 11010$

T > 11000K

von Zeipel's law

β = 0.25

 $T_{pole} = 14520 \text{ K}$

McAlister et al. 2005

CHARA Collaboration Year-Seven Science Review

Gravity Darkening Coefficient: Regulus

Beta = 0.188

PAVO Observation on Rapid rotator

- Confine gravity darkening coefficient (beta)
 - Higher intensity contrast between poles and equator in visible than in infrared

PAVO data is slightly better to distinguish models of different beta.

PAVO Observation on Rapid rotator

Differential rotation

Intensity profile + vsini contour

Solid body rotation, w=0.96

Georgia<u>State</u>University

Differential rotation, Pole: w=0.96 Equ: w=0.8

Differential rotation

Stellar images across a line

H-alpha line

VEGA observation: differential rotation vs. solid-body rotation

VEGA: differential rotation

H-alpha: pressure broadening dominated

•O I triplets: 7772, 7774, 7775 A. Doppler broadening dominated. Model fitting three lines together.

Georgia<u>State</u>Univers

