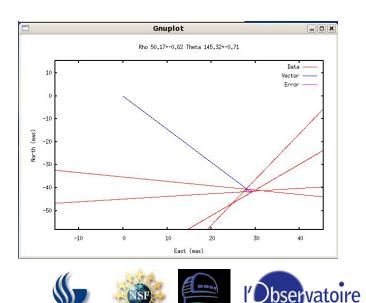

Binary Star Orbits with the CHARA Array

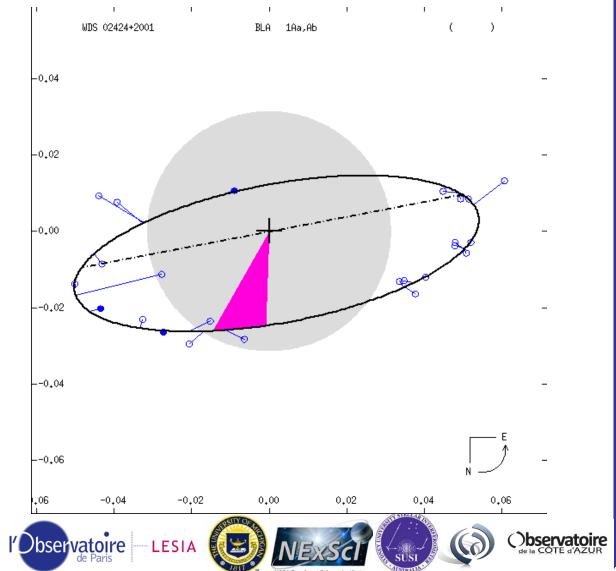
Separated Fringe Packets with CHARA


- Switching from Classic to CLIMB
 - From about 4 targets per hour per baseline
 - To 4 targets on all 3 baselines per hour
- Data from the past year shows that we need at least 6 measurements per night, separated by at least an hour
- Separated Fringe Packet Observations with the CHARA Array. I. Methods and New Orbits for χ Draconis, HD 184467, and HD 198084:
 - The Astronomical Journal, Volume 139, Issue 6, pp. 2308-2318 (2010).

- New addition to our arsenal of tools for measuring SFP data.
- Developed by Theo and modified over the last year.
- Shortens reduction time, easier to manipulate, and provides high quality errors for multiple fitting types.

GeorgiaStateUnivers

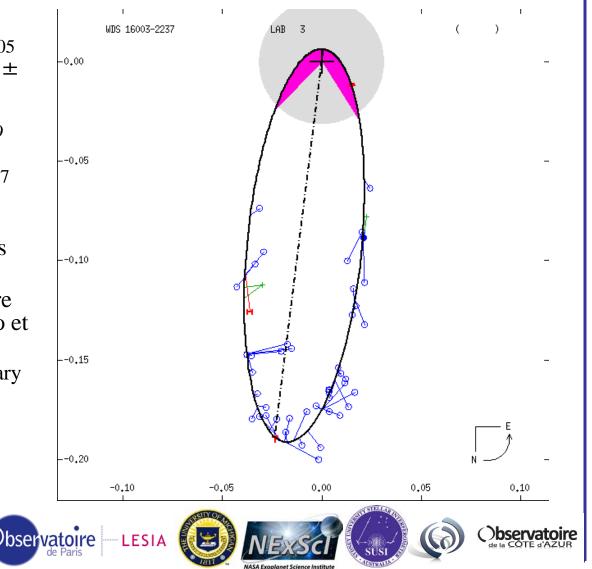
	Sep Type:	Mean Env fi	Mean Env fit			
Use	File		Sep (mas)	Theta	Flip	
\checkmark	2010_11_16_HD_21	.4608_ird_001	49.65	-41.73		
	2010_11_16_HD_21	4608_ird_002	0.00	-152.01		
	2010_11_16_HD_21	4608_ird_003	34.67	-100.79		
	2010_11_16_HD_21	4608_ird_004	43.13	-26.63		
	2010_11_16_HD_21	.4608_ird_005	-16.65	-129.33		
	2010_11_16_HD_21	4608_ird_006	44.63	-83.29		
Dtheta	MJD = 55516.2108797 15.11 to 87.60. Range 2.26+-9.02 Theta 128.5	e = 72.49	2010.875461	527		
Dtheta Rho 52 RMS d MAX d Chi2 di Using	15.11 to 87.60. Range	≥ = 72.49 5+-9.79			2	



HD 16811 (BLA 01)

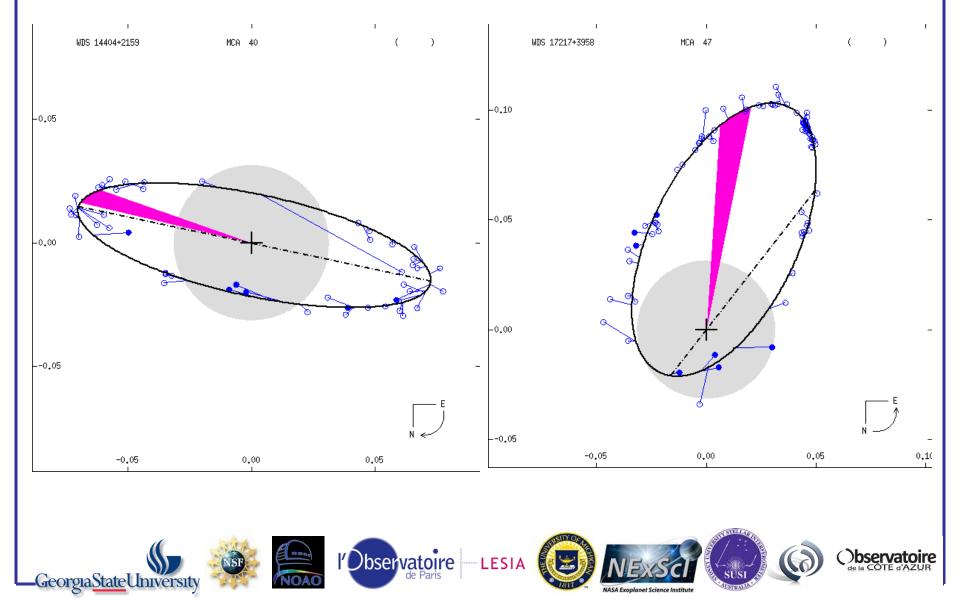
- Period (years) = 8.83940 ± 0.03592
- Semi-major Axis = 0.05666±0.00099
- Inclination = 71.49674 ± 1.90203
- Longitude Node = 100.74799 ± 1.27393
- T0 = 1981.0909424± 0.0661059
- Eccentricity = 0.3452832 ± 0.0306141
- Longitude per = 92.9575500 ± 1.9964956

GeorgiaStateUniversity


HD 143275 (δSco)

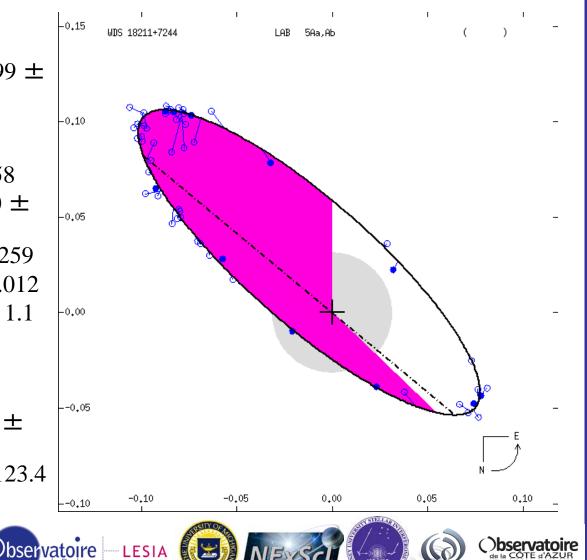
• From Tycner et al. 2011

- Period (years) = 10.817 ± 0.005
- Semi-major Axis (mas) = 99.1 \pm 0.1
- Inclination = 32.9 ± 0.2
- Longitude Node = 172.8 ± 0.9
- $T0 = 2000.6927 \pm 0.0014$
- Eccentricity = 0.9380 ± 0.0007
- Longitude per = 2.1 ± 1.1
- High priority target in 2011 observing season as it travels through periastron
- Masses from Tycner et al. are better than those from Tango et al.


GeorgiaStateUniversi

 Has fixed mass for secondary based on radius and B-V.

HD 129132 (MCA40) & HD 157482 (MCA 47)

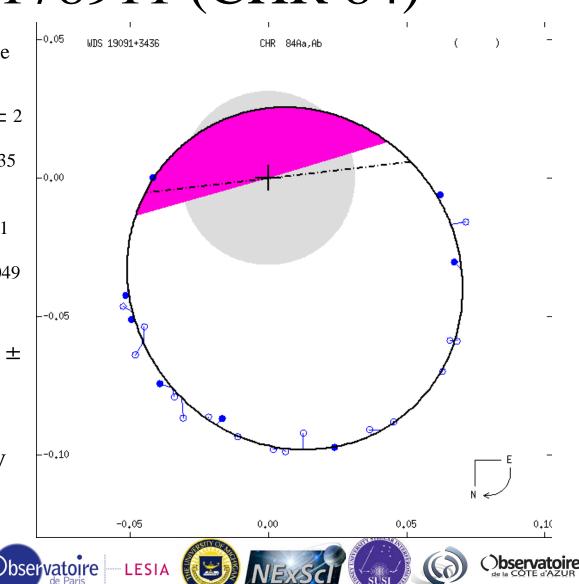


HD 170153 (χDra)

- Orbit from SFP1 paper:
 - Period (years) = 0.7680599 ± 0.000061
 - Semi-major Axis (mas) = 124.4 ± 1.1
 - Inclination = 74.42 ± 0.58
 - Longitude Node = 230.30 ± 0.51
 - $\text{ T0} = 1984.83239 \pm 0.00259$
 - Eccentricity = 0.428 ± 0.012
 - Longitude per = 119.3 ± 1.1
 - Mass (Primary) = $0.96 \pm 0.03 \text{ M}\odot$

GeorgiaStateUniversity

- Mass (Secondary) = $0.75 \pm 0.03 \text{ M}\odot$
- Orbital Parallax (mas) = 123.4 ± 1.9

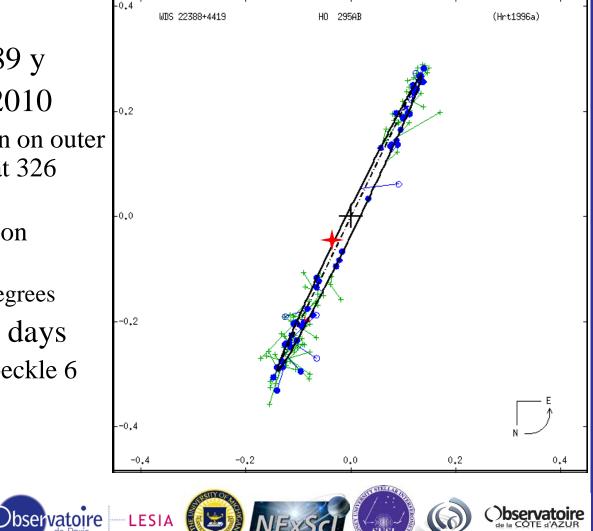


HD 178911 (CHR 84)

- CHARA Orbit including speckle
 - Period (years) = 3.54631 ± 0.00153
 - Semi-major Axis (mas) = 75 ± 2
 - Inclination = 146.31 ± 1.04
 - Longitude Node = 96.80 ± 1.35
 - $T0 = 1997.33891 \pm 0.00359$
 - Eccentricity = 0.600 ± 0.004
 - Longitude per = 263.32 ± 0.81
 - Mass (Primary) = 0.736 ± 0.049 MO
 - Mass (Secondary) = $0.572 \pm 0.047 \text{ MO}$
 - Orbital Parallax (mas) = 29.49 ± 1.72
- As it passes through periastron this year, another high priority target
- Masses are small for G1V+G5V components. Periastron measurements should help

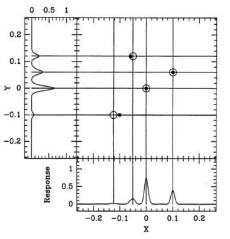
CHARA Collaboration Year-Seven Science Review

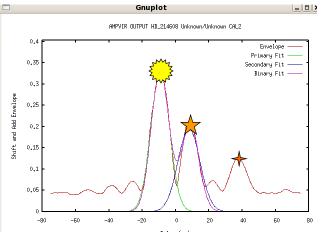
HD 209790 (17 Cep)

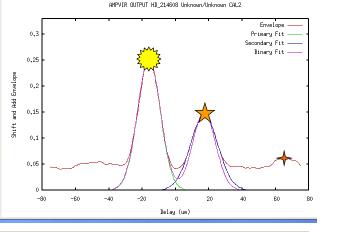


HD 214608 (BAG 15)

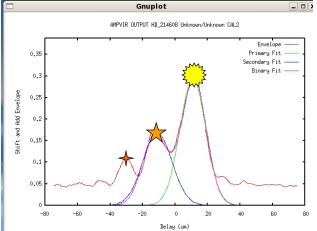
- Triple system
 - Outer orbit: 29.889 y
 - Observed 09/01/2010
 - Predicted position on outer orbit 61.69 mas at 326 degrees
 - Second observation 11/16/2010
 - 81 mas 328 degrees
 - Inner orbit: 551.6 days
 - Resolved with speckle 6 times
 - No visual orbit

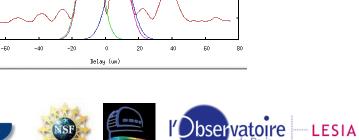

Georgia State Universit




CHARA Collaboration Year-Seven Science Review

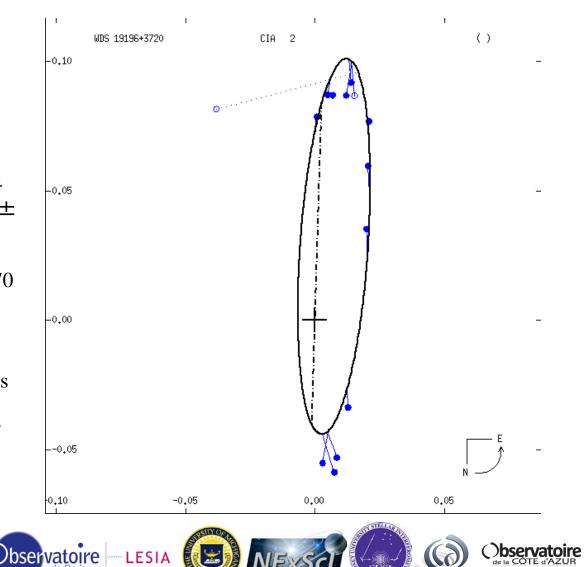
HD 214608 (BAG 15)





Gnuplot

_ _ >

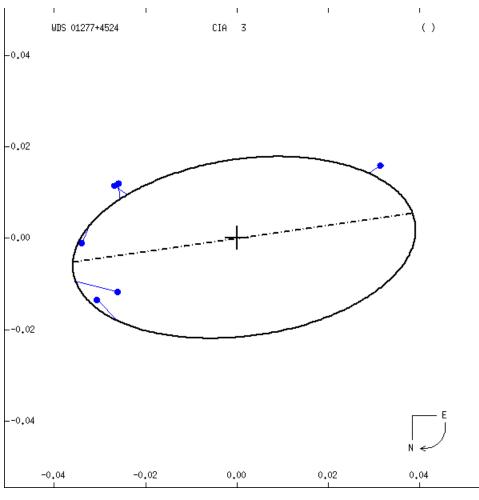

CHARA Collaboration Year-Seven Science Review

HD 181655

- Preliminary orbit from CHARA 2005-2010
 - Period (years) = 0.9017 ± 0.0052
 - Semi-major Axis (mas) = 81.6 ± 5.2
 - Inclination = 79.93 ± 2.54
 - Longitude Node = 178.25 ± 2.6
 - $T0 = 2010.6073 \pm 0.0229$
 - Eccentricity = 0.577 ± 0.070
 - Longitude per = 127.57 ± 4.98
- Difficult system:

GeorgiaStateUniversit

- No radial velocity variations over 0.1 km/s over 15-20 years worth of observations
- Almost always north/south but always has 2 fringes



HD 8799 (w And)

- Asked to look into this system by R. Griffin
 - Period (years) = 1.161 ± 0.048
 - Semi-major Axis (mas) = 38.05 ± 8.27
 - Inclination = 120.61 ± 12.06
 - Longitude Node = 278.22 ± 11.95
 - T0 = 2009.84 \pm 0.20
 - Eccentricity = 0.120 ± 0.089
 - Longitude per = 73.4 ± 78.9
- Very preliminary, another target for this year.
 - Does not fit spectroscopic orbit as yet. (254 days vs 424 days)
 - Nearly identical components

GeorgiaStateUniversi

Scheduling Statistics

2010-1

2010-2

BC	Proposals	Optimal	Assigned	BC	Proposals	Optimal	Assigned
Classic	14	86	79	Classic	7	55	35
FLUOR	3	45	32	FLUOR	2	36	20
MIRC	8	50	45	MIRC	7	54	32
PAVO	7	42	33	PAVO	6	29	19
VEGA	13	28	28	VEGA	15	30	25
CLIMB	3	39	26	CLIMB	5	38	23
Totals	48	290	243	Totals	42	245	154
153 Nights		89.5%	58.8%	108 Nights		126.9%	42.6%

LESIA

l'Observatoire

Scheduling Statistics Pt.2

• 2010-1

GeorgiaStateUnivers

- Beams 1-4: 132 nights
- Beams 5-6: 111 nights
- Ratio: 1.2 : 1

- 2010-2
 - Beams 1-4: 99 nights
 - Beams 5-6: 55 nights
 - Ratio: 1.8 : 1

- 2011-1 (requested)
 - Beams 1-4: 145
 - Beams 5-6: 68
 - Ratio: 2.1 : 1

- 153 days available
- 208 days requested
- 36% oversubscribed

