Report from the Beam Combination and OPLE Lab Judit Sturmann

Topics

- 2010, the year of mixing and matching maximizing access to observing time
- Maintenance and improvements

in the background

- Delay lines
- Light path issues
- NIRO / CLIMB news

What's Happening Under the Roof

Beam Combination

OPLE Delay Lines

Beam Sampling,

Beam Compression

S2

Looking Toward the Beam Combination Lab

What's Happening Under the Roof

Beam Combination Lab

Combinations of Combiners

Shared telescopes (same objects) phase matched combiners, fringes at the same time

CHAMP (6) - MIRC (6) - VEGA (4) - PAVO (3) CHAMP (6) - CLIMB (3) - VEGA (4) - PAVO (3) FLUOR (2) - VEGA (4) FLUOR (2) - CLASSIC (2)

Different telescopes parallel combiners running independently

CLASSIC (2) - CLIMB (3)CLASSIC (2) - MIRC (4)CLASSIC (2) - VEGA (4)CLASSIC (2) - PAVO (3)

CLASSIC (2) - FLUOR (2)

FLUOR (2) - CLIMB (3) FLUOR (2) - MIRC (4) FLUOR (2) - VEGA (4) FLUOR (2) - PAVO (3)

Maximizing Relevant Results

by maximizing access time

Current scheduling wizard setting: more time to more observers

More data when everything works

more frustration when some don't

Maintenance in the background - Some risk involved!

- time only for reconfiguration and quick adjustments in observing season
- fix only when brakes added unpredictability
 - potentially much longer down time
- less time for improvements (a longer term risk)

OPLE Cart Troubles

Some reasons for

"cart stuck",

Excessive load due to:

- Bad rail alignment *
- Sticky cables
- Wearing of the bearings

"cart vibrates"

Picture by Tabetha Nov. 11, 2009

Not enough friction due to:

Not optimal spacing

Observatoire LESIA

Black powder on drive rail

Control issues:

- Controller fuse
- Amplifiers tuning

The Overall Positions of Rails

Rail Alignment

Takes a long time to properly align and they keep moving like all things

• there are three rails, ~50 m, per telescope

Rail Alignment

Takes a long time to properly align and they keep moving like all things

- there are three rails, ~50 m, per telescope
- about 80 sleepers across, height adjustments at the two sides

Rail Alignment

Takes a long time to properly align and they keep moving like all things

- there are three rails, ~50 m, per telescope
- about 80 sleepers across, height adjustments at the two sides
- the alignment of all three rails is important
 - x,y,z and spacing to keep the beam stable

to keep the carts moving at all.

Optical Bench, the 7th Rail

6 m long

Same spacing as delay lines

All testing tools fit Rail telescope, etc.

Easier access from both sides

S2 Vignetting

Part of VEGA display

The rail telescope gives a detailed view into the light pipe

M10 mirror was

 \sim 1" too low

Why the Difference in Polarization

By design, there should not be any, if all the coatings are the same on each corresponding surface of the six lines.

Most likely reason of the polarization problems:

The lines became non-symmetric in 2007, when in order to increase transmittance we started replacing bare aluminum coated surfaces with over-coated silver all the way to M2.

Meanwhile we learned that the silver coating did not last anywhere outside the lab.

From the 2011 season the symmetry will be restored,

but with more aluminum surfaces.

All surfaces from M1 to M9 will be aluminum.

There are 3 more surfaces left, which could be silver:

OPLE cart primary, and the BRT primary, secondary

Another Correction for Symmetry

Orientation of vacuum windows (0.62 < wedges < 0.82 arc min) at the two ends of the light pipes

ideally $y \uparrow_{z} x$ some mirrors $y' \uparrow_{z'} x'$ in between $y' \uparrow_{z'} x'$

The pairs in fact were oriented randomly, non of them being opposite.

This introduced random dispersion differences between the lines.

Steve Ridgway: "If the wedges aren't aligned oppositely, it could give up to 3.5 arcsec dispersion between 0.5 and 2.5 microns, most of it short of 1 micron."

They will be rotated correctly by the start of the coming season.

CLIMB-1 and Classic Setup

The setup is the same since last year and stays indefinitely

Georgia State University

