Telescope Alignment and Wavefront Sensing

Laszlo Sturmann

Atlanta 2011
Wavefront Evaluation at CHARA

• 2001-2010 Wavefront is computed from its Laplacian (Roddier)

• 2010 Wavefront is computed from its gradient (Shack-Hartmann Sensor)

not for alignment

better for alignment
Optical Setup

WFS
OKO Standard Config. #1
Hexagonal array
127 lenses, 0.3 mm pitch
F=18 mm.

CCD

40 mm collimator

Green filter

focal plane

Beam splitter

25 mm eyepiece

LED

Reticle

Projector

FrontSurfer

Wavefront expanded into Zernike polynomials
CALIBRATION

9.922 μm

9.907 μm

TAS

PINHOLE SOURCE, TAS OBJECTIVE

- Strehl = 0.95
- RMS = 17 nm
- P – V = 152 nm

PINHOLE SOURCE, TAS COMPLETE

- Strehl = 0.92
- RMS = 22 nm
- P – V = 196 nm

50x452ms EXPOSURE OF VEGA

- Strehl = 0.89
- RMS = 27 nm
- P – V = 237 nm

ZERNIKES [nm]

E1

- 1000 x 10ms exposures of Vega

- 540 nm
- 1600 nm
- 2200 nm

WAVEFRONT MAP

Strehl = 0.35
RMS = 78 nm
P – V = 558 nm

ZERNIKES [nm]

- $Z_5 = -28$
- $Z_6 = -2$
- $Z_7 = -7$
- $Z_8 = 1$
- $Z_9 = -8$
- $Z_{10} = 11$
- $Z_{11} = 31$

Strehl = 0.89
Strehl = 0.94

ZERNIKES [nm]

- $Z_5 = 58$
- $Z_6 = -141$
- $Z_7 = -114$
- $Z_8 = -5$
- $Z_9 = 0$
- $Z_{10} = -66$
- $Z_{11} = 90$

contours in nm
E2
9/17/2010

1000 x 10ms exposures of Vega

<table>
<thead>
<tr>
<th>WAVEFRONT MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>contours in nm</td>
</tr>
</tbody>
</table>

Strehl = 0.14
RMS = 95nm
P – V = 606nm

ZERNIKES [nm]

\[
Z_5 = 55 \\
Z_6 = -41 \\
Z_7 = -154 \\
Z_8 = 53 \\
Z_9 = -158 \\
Z_{10} = -166 \\
Z_{11} = 149
\]

S1
9/23/2010

1000 x 10ms exposures of Vega

<table>
<thead>
<tr>
<th>WAVEFRONT MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>contours in nm</td>
</tr>
</tbody>
</table>

Strehl = 0.02
RMS = 231nm
P – V = 1211nm

ZERNIKES [nm]

\[
Z_5 = 568 \\
Z_6 = -226 \\
Z_7 = -307 \\
Z_8 = 27 \\
Z_9 = 14 \\
Z_{10} = 40 \\
Z_{11} = 147
\]
TWEAKING ALGORITHM
BASED ON SIMULATIONS

center star in WFS

WFS: \(Z_5, \ldots, Z_{11} \)

\[
\sqrt{Z_7^2 + Z_8^2} \leq \varepsilon_{\text{coma}}
\]

\(\text{Y} \)

\[
\sqrt{Z_5^2 + Z_6^2} \leq \varepsilon_{\text{ast}}
\]

\(\text{Y} \)

focus

\(\text{N} \)

tilt M2

re-center star by tilting the telescope

\(\text{N} \)

tilt M1

re-center star by tilting M2

\(\text{N} \)

tilt M2

re-center star by tilting the telescope

focus
ORTHOGONAL AZ-EL ADJUSTMENT AT M2 BUT NOT AT M1

SOFTWARE

DIAL INDICATOR

ACTUATOR

EL
AZ
02-03-2011

P-V=1340 nm
RMS=270 nm

02-12-2011

P-V=318 nm
RMS=50 nm

W1

<table>
<thead>
<tr>
<th></th>
<th>02/03/11 [nm]</th>
<th>02/12/11 [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₅</td>
<td>540</td>
<td>27</td>
</tr>
<tr>
<td>Z₆</td>
<td>570</td>
<td>145</td>
</tr>
<tr>
<td>Z₇</td>
<td>-175</td>
<td>-41</td>
</tr>
<tr>
<td>Z₈</td>
<td>196</td>
<td>-40</td>
</tr>
</tbody>
</table>

ASYMMETRIC PUPIL
MONTE CARLO SIMULATION

SOLUTION 1

SOLUTION 2

TWO SOLUTIONS AT A GIVEN M1, M2 LATERAL DISPLACEMENT
FUTURE PLANS: TESTING M1 IN SITU

WHAT IS THIS?

FOCUS INACCESSIBLE
FINDING THE VERTEX OF M1

M1 is F/2.5

VERY SENSITIVE TO MISALIGNMENT

COMA

CCD CAMERA
SIMULATED PRIME FOCUS IMAGES

OFF-AXIS

ON-AXIS
COMA FREE TILTING OF M2

SPHERICAL BEARING AT THE FOCAL POINT

ACTUATORS

M2
ODDS & ENDS

• COUDE-BOX COVER

• HUMIDITY-TEMPERATURE SENSORS IN THE DOMES

![Graph showing temperature changes over time](image-url)