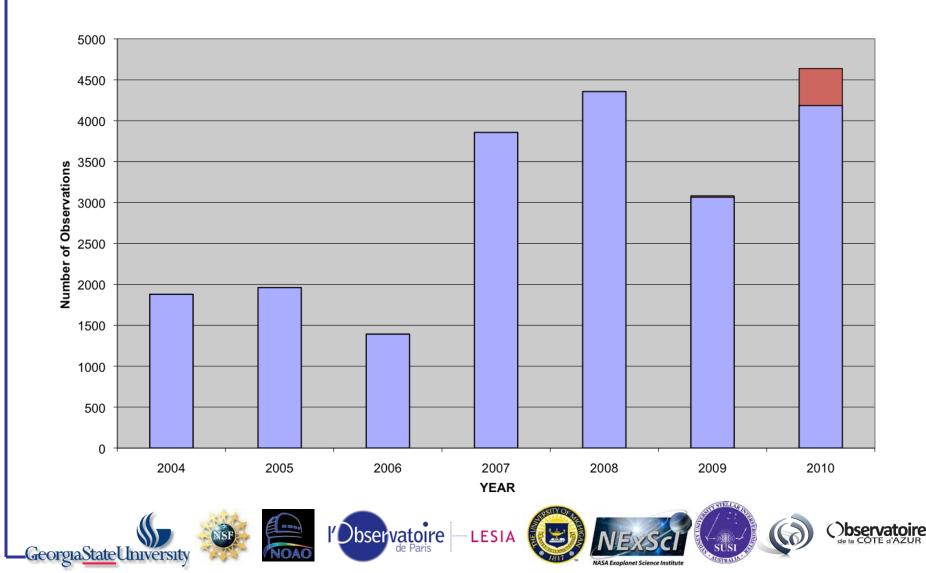


CHARA Classic/Climb Throughput.

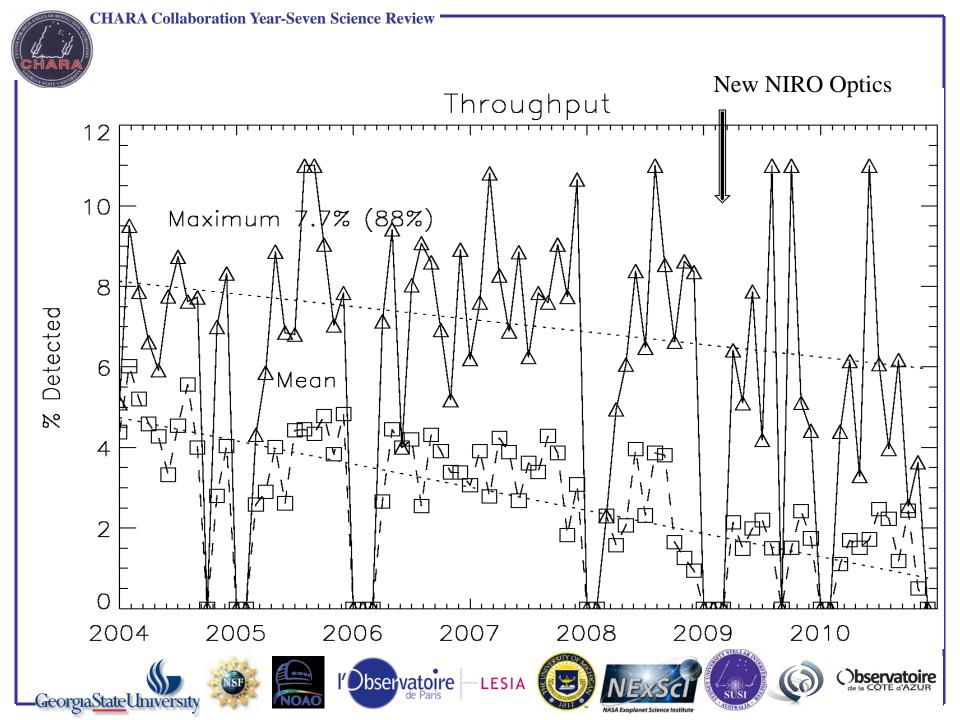
Automated Data Reduction

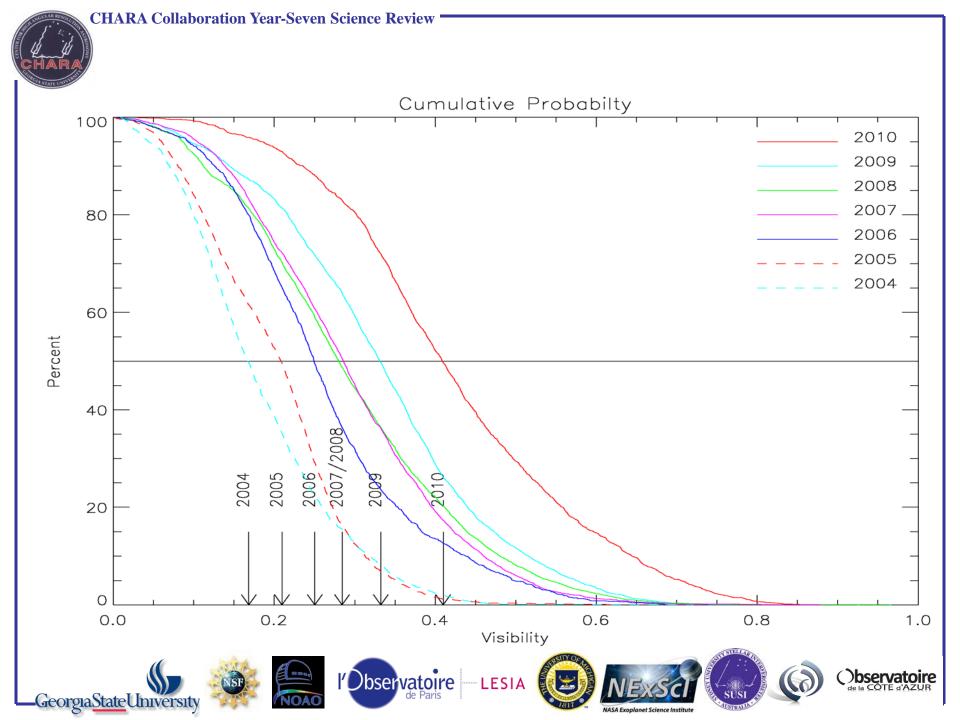

- Automated editing Fringe > 1.1 Noise Power
- Took approximately 180 minutes to crunch.
- V < 0 and V > 1 thrown away.
- Not reliable for science.
- K magnitudes extracted from 2MASS.
- Stars without 2MASS data thrown away.
- Includes both calibrators and science targets

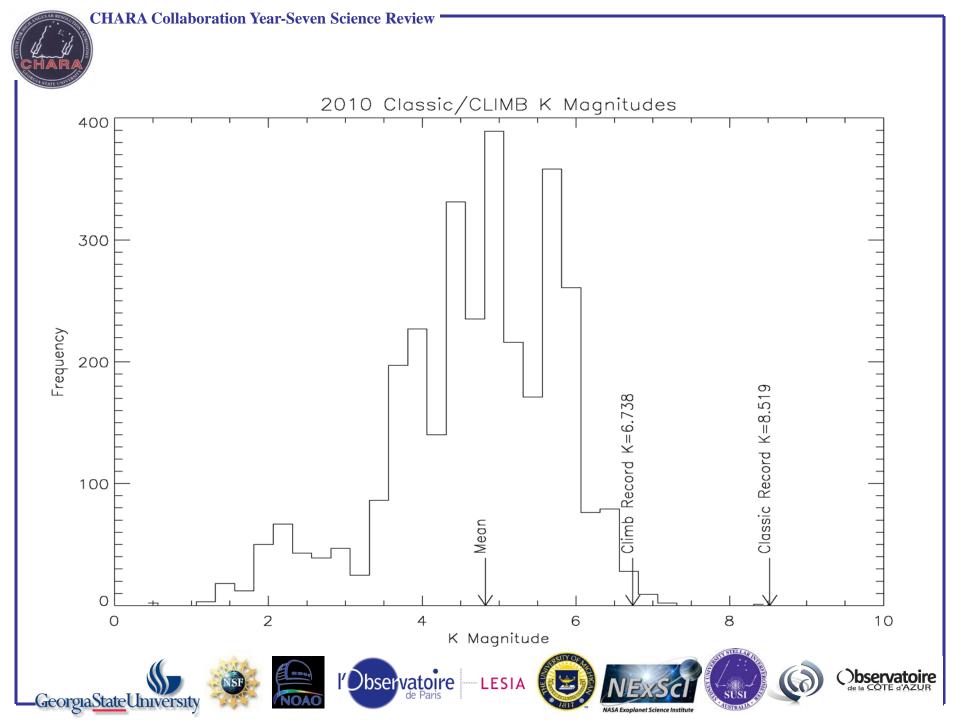
CHARA

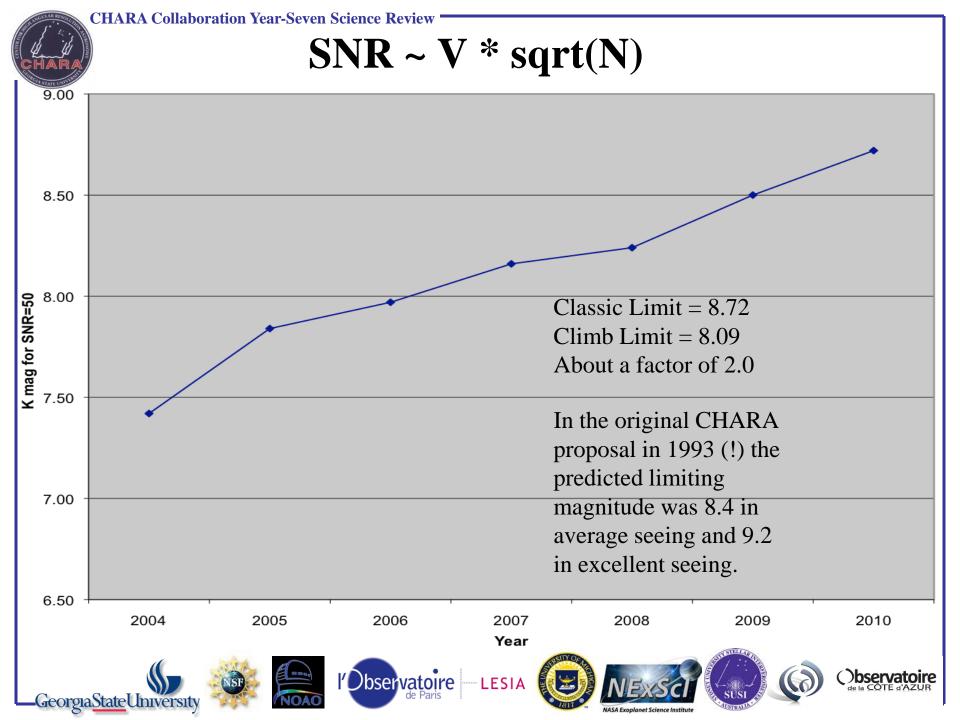
Amount of Data

CHARA CLASSIC/CLIMB



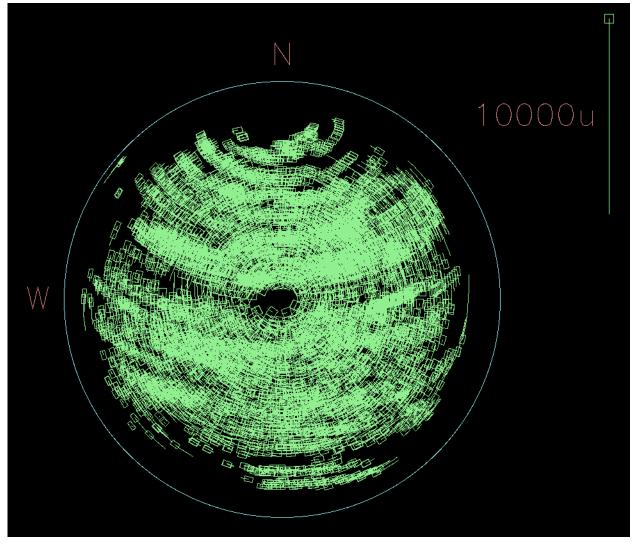



K Mags are converted to a photon count.

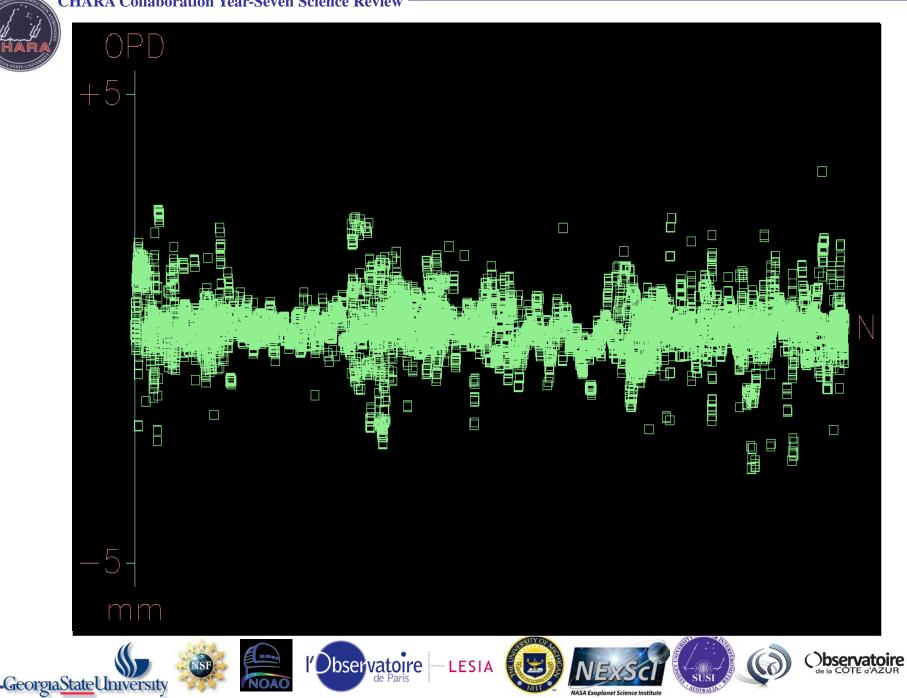

- In K band there are 4.31×10^9 Photons m⁻² s⁻¹um⁻¹
- Two 1m telescopes: $2 \ge \pi \ge 0.25 = 1.57 \text{ m}^2$
- All data calibrated to 1 second.
- This assumes the NIRO readout mode behaves.
- K band is 0.35 um wide.
- All of this results in Nph = $2.37 \times 10^{(9-M/2.5)}$
- Camera Gain = 0.3, DQE = 60%.

GeorgiaStateUnivers

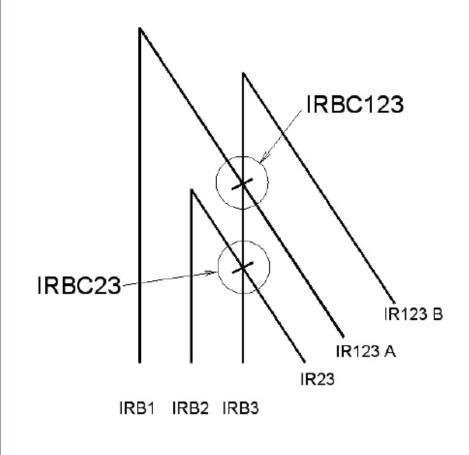
New Baseline Solution


- The system records OPLE demand positions and current Alt/Az when fringes are found.
- This is automated for all beam combiners.
- Data from multiple baselines improves the solution.
- The demand position is better for modeling than the measured position.
- The height of a scope is degenerate with its internal path.
- We use a different internal path for each POP configuration to solve for telescope positions.
- We then do a separate solution for internal path.

l'Observatoire LESIA



1 · · · · · · · · · · · · · · · · · · ·	CHARA ALL					-94632983	.492 36	60.6224 /51	E1P41B13 S	1-W1.A -78	32752.025 342.	1828	/S1W1P12B	13
	18474 1480 =S1.X	9.192	# For t	elescope								96	/E1W1P32B /E2W1P11B	23
CHARA	=S1.Y =S1.Z		X0FFSET		0.000		0.000		000		,	93	/E2W2P15B /W1W2P15B	31
STATE USUSI	S2.X	+574	VOFESET		0.000	e e	0.000		000			99	/W1W2P13B	56
	S2.Y S2.Z	+63	70FFSFT		0.000		000.		000			41	/E1E2P12B /S1W1P31B	23
	S1-E2.A E1.X	- 19999	LIGHT		0.000		000.		.000			13	/W1W2P15B /S1E1P44B	13
	E1.Y E1.Z	-30593		elescone						delta	6598.835	14	/S1W1P42B /E1W1P42B	
	E2.X E2.Y	-/039	XOFFSET					-513.		ucttu	0550.055	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/S2W1P12B /W1W2P25B	
	F2.7	-280	YOFFSET										/S2E1P44B /S2W1P42B	
	W1.X	+17507	ZOFFSET		458.034).541					74	/S2E2P41B /S2W2P45B	13
	W1.Y W1.Z		LIGHT		438.034 831.159							56	/E1W2P45B /S1E2P41B	32
	W2.X W2.Y									dol+a	100/ 012	14	/E2W1P12B /S1S2P45B	32
	W2.Z S1-E1.A			-						uetta	1894.913	97	/S1W2P45B	13
	S2-E1.A S1-S2.A	+4717 +447		125333								33	/S2W2P55B /S1E2P25B	43
	S2-E1.A S2-E2.A	-5884			610.441		5.671					14	/S1W1P21B /S1W2P25B	42
	E1-E2.A S1-E1.A											55	/E2W1P51B /E2W2P55B	32
	S2-E2.A	-2102	LIGHT		822.564							90	/W1W2P15B /S2E1P41B	34
	S2-E2.A S1-S2.A	7490								delta	3544.374) 23 93	/S2W1P41B /S2W2P45B	31 32
	S1-E2.A S1-S2.A	-6864	X0FFSET		768.413		3.519					59	/E1W1P11B /E1W2P15B	41
	S1-E1.A S2-E2.A	+2147	YOFFSET									14	/S2E1P24B /S2W1P21B	34
	S2-E2.A S2-W2.A	+5801 -1011	ZOFFSET									95	/S2W2P25B /E1W1P41B	32
	S2-E2.A	-8821	LIGHT		490.507		8.897					53	/E1W2P45B	42
	S2-W2.A E2-W2.A	+3807					ddev	delta	(total	delta	2113.392) 95		41
	W1-W2.A S1-W2.A			-175072	619.065	108	3.262	-713.	.146				/S1W2P35B /E2W1P11B	
	S1-E2.A S2-W1.A	- 15667 - 15537	YOFFSET	2163184	449.259	132	2.974	1985.	240					
	E2-W1.A S1-E1.A	-7014 -9439	ZOFFSET	-10790	982.114	263	3.378	-129.	121					
	S1-W1.A S1-W1.A	-15067 -4419	LIGHT	27286	241.250	2112	2.102	860.	303					
	S1-E1.A E1-W1.A		# For t	elescope	W2: va	lue st	ddev	delta	(total	delta	3794.207)		
	S1-E1.A	-12273	X0FFSET	-69092	733.004	110	.879	-849.	792					
	E2-W1.A	-14048 +11267	YOFFSET	1993328	847.726	151	.749	1885.	509					
	W1-W2.A S1-W1.A	-7460 -4377	ZOFFSET	464	155.030	299	.321	3180.	993					
	S2-W1.A <u>W</u> 1-W2.A	-1234 -3779	LIGHT	-10871	696.907		2.549	3184.						
		6							ERSITY OF A		A SHE MAN	R.		
			NSF		' Obse	rvatoir	e L	ESIA		NEVE		T	(\mathbf{a})	
Georgia	StateUr	uver	sity 🚿	NOAO		de Paris		A.		NEAD	SUSI			ME
0									NA	SA Exoplanet Science	nsutute			



GeorgiaStateUnivers

CLIMB Update

Observatoire

Beam Combiner Layout

- Despite the lack of a working data reduction pipeline CLIMB has become very popular.
- There were only 2-3 CLASSIC proposals this season.
- Do we turn CLASSIC into a second CLIMB this winter?
- With the addition of one kinematic mount we could have both.
- Nearly 500 data files in 2010.

Judit Sturmann July 9, 2009

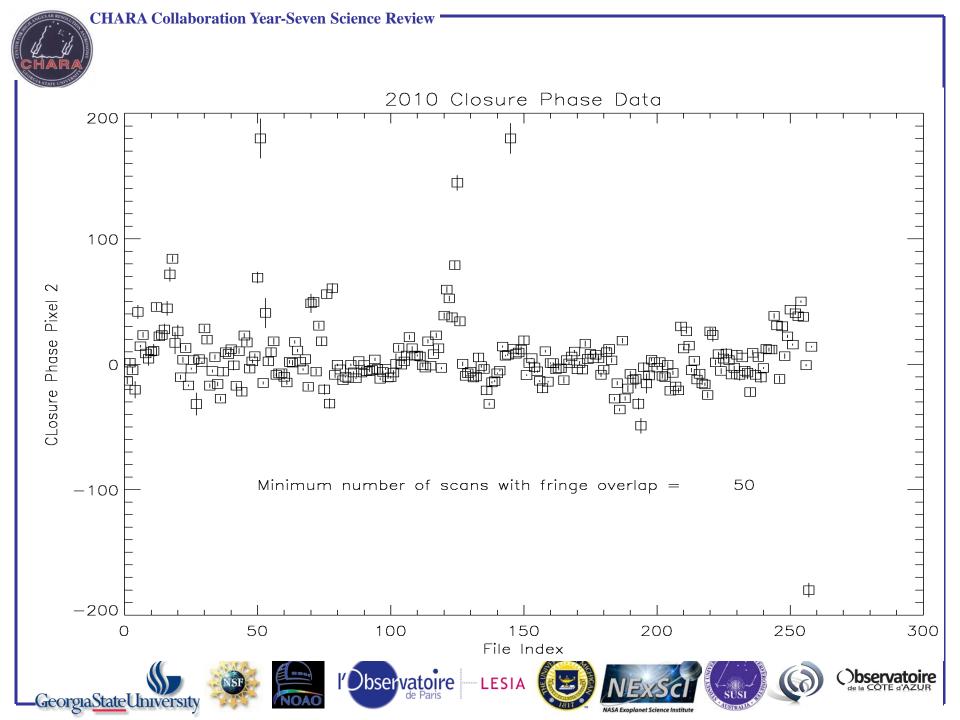
Redclimb Example Output

• Each scan is broken up into segments such that the segment length is one wave of the lowest frequency fringe. This happens to be the beam 3 and 1 baseline.

• This means the other two fringes will have two (beams 2&3) and three fringes (beams 1&2) in the segment.

• A DFT of the segment will have the three baselines represented in the 1, 2 and 3 cycle bins. In fact you only need to calculate the DFT for these three frequencies.

• It's important that the frequencies close, that is you need to use the frequencies $-f_{12}$, $f_{23} \& f_{31}$.


• The triple product of the DFT values for these frequencies contains the closure phase signal weighted by the triple amplitude.

• The mean of this triple amplitude is calculated across all segments in all scans.

GeorgiaStateUniversity

What we have learned.

- This only works if $t_{seg} < t_0$ so you need to use as few samples per fringe as possible (3) and use the fastest and shortest scan possible.
- Baselines 23 and 31 have shorter scans and more samples per fringe and should normally be used for group delay tracking. Use beam 3 as reference when possible.
- CLIMB fringe amplitudes do not calibrate as well as CLASSIC. Use CLASSIC for the best precision fringe amplitudes.
- Only scans with fringe overlap count. The defaults for scan numbers and aceptance may have to change.

l'Observatoire LESIA