

VLTI Status

Gerard T. van Belle

PRIMA Instrument Scientist European Southern Observatory March 1st, 2011

Food for Thought

European Organization for Astronomical Research in the Southern Hemisphere

"There ain't no such thing as a free lunch" -R. A. Heinlein

¹Often abbreviated as TANSTAAFL, from *The Moon is a Harsh Mistress*, 1966

Food for Thought

> What's for lunch?

 \rightarrow ultra-high-resolution astronomy – easily 2 orders of magnitude beyond conventional techniques

 \rightarrow Even more resolution? Even more cost

- > The price?
 - \rightarrow sensitivity & complexity
 - have to burn precious starlight photons to do real-time alignment of your optics

 \rightarrow TANSTAAFL turns up pretty much everywhere else in interferometry, too

Current Major Development at Paranal: VLTI PRIMA

PRIMA: The Dual-Feed Facility for VLTI

- PRIMA = Phase Referenced Imaging and Microarcsecond Astrometry
- "Two interferometers in one" tied together by laser metrology
 - ≻ Roughly 3× harder
- > An instrument or a facility?
 - > A bit of both
- > Enables 3 new modes:
 - Stand-alone instrument: Astrometry
 - Facility feeding AMBER/MIDI:
 - ***Faint star science** (like singleaperture NGS)
 - *Phase-referenced imaging

PRIMA Modes Details

> Astrometry

- Primary star: science target, bright (K<8), possibly has planet,
 - used to phase instrument

- > Secondary star: dim ($\Delta K < 5-7$), background, astrometrically stable (as verified by RV if necessary)
- > $\triangle OPD$ between two interferometers \rightarrow astrometric separation vector \rightarrow science at the ~30µas level

Faint object science

- > Primary star: bright (K<8), boring, used to phase instrument
- > Secondary star (or ? see image above): science target, dim ($\Delta K < 5-7$), fed into AMBER/MIDI
- > V^2 measurements of AMBER/MIDI \rightarrow science

> Phase referenced imaging

- Like faint star science operationally, with addition of PRIMET metrology
- > V^2 , $\Delta \phi$ measurements of AMBER/MIDI \rightarrow science

Another Way to Think of PRIMA

European Organization for Astronomical Research in the Southern Hemisphere

"If we pull this off, we'll eat like kings."

PRIMA Architecture

European Organization for Astronomical Research in the Southern Hemisphere

- Auxiliary Telescopes (ATs)
 - Collects starlight
- Star Separators (STSs)
 - Picks out two sources in a 120" FOV
 - > Tip-tilt field stabilization (STRAP)
 - Metrology endpoint
- Main Delay Lines
 - Provide optical path delay to both starlight beams
- Differential Delay Lines (DDLs)
 - Provide optical path delay to individual starlight beams
- Fringe Sensor Units (FSUs)
 - > Twin fringe trackers for starlight
- PRIMA Metrology (PRIMET)
 - > Ties two starlight beam paths together
- Infrared Image Stabilizer (IRIS)
 - > Tracks residual tip-tilt errors in lab
- > MARCEL
 - Calibration source

PRIMA Architecture

European Organization for Astronomical Research in the Southern Hemisphere

- Auxiliary Telescopes (ATs)
 Collects starlight
- Star Separators (STSs)
 - Picks out two sources in a 120" FOV
 - > Tip-tilt field stabilization (STRAP)
 - Metrology endpoint
 - Main Delay Lines
 - Provide optical path delay to both starlight beams
- Differential Delay Lines (DDLs)
 - Provide optical path delay to individual starlight beams
- Fringe Sensor Units (FSUs)
 - > Twin fringe trackers for starlight
- PRIMA Metrology (PRIMET)
 - > Ties two starlight beam paths together
- Infrared Image Stabilizer (IRIS)
 - > Tracks residual tip-tilt errors in lab
- > MARCEL
 - Calibration source

RED: New for PRIMA

PRIMA Commissioning

European Organization for Astronomical Research in the Southern Hemisphere

www.xkcd.com

- PRIMA is a little complicated
 - Even making allowance for it being an interferometry project
 - Roughly 3× a 'normal' optical interferometer
- System integration the key challenge here

		FSU	PRIMET	DDL	STS	ADRS	ISS, PRICS	PACMAN	(D)OPDC
MA sub- system tests as of April 201(FSU	linearity & tip-tilt	8	Х	٢	-	:	0	()
	PRIMET		9			8		—	8
	DDL			٢	Х	8	٢	•	•
	STS				😐 Pupil	Х	٢	Х	Х
	ADRS					٢	X	(Х
	ISS, PRICS						٢	:	
	PACMAN							٢	
PRI	(D)OPDC								0

ight tested & working – ight partially tested and working – ight vet tested

E C A F S F

cecond Astron.

, 		FSU	PRIMET	DDL	STS	ADRS	ISS, PRICS	PACMAN	(D)OPDC
PRIMA sub- system tests as of Feb. 201.	FSU	linearity & tip-tilt	٢	Х	٢	٢	٢	٢	٢
	PRIMET		O	٢	٢	٢	٢	٢	٢
	DDL			0	Х	٢		\odot	
	STS				CON CON	Х	٢	Х	Х
	ADRS					٢	Х	()	Х
	ISS, PRICS						٢	٢	٢
	PACMAN							٢	٢
	(D)OPDC								\odot
🙂 tested & working – 💛 partially tested and working – 😕 not yet tested								tested	

Ε

C ≁ F

દ ન

cecond Astron

PRIMA Single Fringe Tracking

PRIMA Astrometry

- First results
- The first plots shows the measurements of the differential Optical Path Difference (dOPD) between a pair of stars.
- The lower plot shows residuals of a *simple* (zeroth order) astrometric fit
- > The dOPD is the projection of the star separation on the interferometer baseline. The time evolution (due to the Earth rotation) is clearly seen (trend).
 - The "chopped" nature of the measurements is due to the observational method where both stars are regularly exchanged (swapped) between the 2 Fringe Sensor Units in order to calibrate out some biases. The measurable is the difference between both fits.

PRIMA Astrometry

- First results (zoomed)
- Twin traces show metrology signal before/after PS-SS and SS-PS swap
- Lower plot shows residuals of *simple* astrometric fit
- Night-to-night repeatability of 75mas
 - Not bad, except goal is
 >75µas
 - Does not include fringe error signal, other known error terms
 - Clearly some systematics at ±10µm level not accounted for yet
 - > Need to be at $<1\mu$ m for \sim 75µas astrometry

PRIMA Co-Phasing Demonstration

SA0221759 (m_{K} =7.1) stabilized by HD87640 (m_{K} =4.8, 6.6" distant) Seeing monitor: 0.87" with 10ms coherence time 2011.02.05 VLTI PRIMA "Raw" measurements (no fancy data reduction was applied)

- Use of a bright star to stabilize the system for 'staring' at a fainter one:
 - similar to natural guide star adaptive optics but for interferometry
 - The fringe tracking loop was run at 1kHz on the bright star
 - The fringe tracking on the fainter star was then slowed to 500Hz, 250Hz,
- Final result: 1Hz scanning
 - Each data point on the left is one full second long
 - We still see the fringes proving that the secondary fringes were effectively stabilized
 - Factor of 1000× in integration time (!)
 - This shows the potential gain in sensitivity that offaxis fringe tracking can bring.

Future Developments

Currently offered: AMBER, MIDI
 PIONIER (new; first guest instrument)

> PRIMA dual-beam observations

- Astrometry (April 2012)
- MIDI on-axis faint
- > AMBER, MIDI off-axis faint
- Phased-referenced imaging (TBD)
- > UT STSes
- > 2nd Generation Instrumentation
 - GRAVITY (~2014) 4× high sensitivity (K>16) high resolution (10µas) astrometry
 - > MATISSE (~2014) $4 \times$ N-band imaging
- > Infrastructure
 - MAMMUT vibration tracking/control
 - > NAOMI AT AO
 - > 2^{nd} gen 4× fringe tracker

VLT Unit Telescopes Yes, we've got big glass

15.02.2011

Gerard van Belle - Optical Interferometry