

Imaging δ Del Around the 2011 Periastron

X. Che University of Michigan

Collaborator:

- J. Monnier,
- C. Tycner,
- S. Kraus,
- F. Baron,

University of Michigan Central Michigan University University of Michigan University of Michigan

Del Sco: background

- Be binary: B0.5Ve + B2V
- High eccentricity: ~ 0.94
- Period: ~ 10 years
- Periastron was expected around July 6th 2011 (Tycner et al. 2011) when the distance between the primary and secondary will be only a few times of the size of the disk

Observations

- 7 nights of MIRC observation from July 10th to 22nd, only a few days after the predicted periastron. 5-telescope data only. One of the telescopes doesn't have enough delay range because the target is too south.
- 128 astrometric measurements of the binary since last periastron observed at NOI (provided by C. Tycner)

a (mas)

i (deg)

 $T_0 (MJD^a)$

P (days)

 51797.4 ± 0.1

 3922.7 ± 7.3

Ω

Binary Orbital Parameters 150 □New orbital parameters from all NOI observation ■32 more observations in 2011 from Apr. to Jul. The new calculated periastron date: 2011 July 03 13:00±4 hours Dec (mas) Agrees marginally with 2011 July 06±2 days 100 from Tycner et al 2011 Green: from Tycner et al 2011 Orange: new NOI data Red: MIRC data in 2011 July 50 Tycner et al. (2011) NOI only (new fit) Parameters Tango et al. (2009) 98.3 ± 1.2 99.1 ± 0.1 99.04 ± 0.03 38 ± 6 32.9 ± 0.2 32.2 ± 0.3 175.2 ± 0.6 172.8 ± 0.9 174 ± 1 0 0.9401 ± 0.0002 0.9380 ± 0.0007 0.9389 ± 0.0003 1.9 ± 0.1 2.1 ± 1.1 0.3 ± 0.7

 55745.5 ± 0.16

 3947.8 ± 0.4

 51797.0 ± 0.5

 3950.8 ± 1.8

30 20 10 0 -10-20-30-40 RA (mas)

δ Sco orbit

Binary Star Model

- We adopted a rapidly rotating stellar model (Aufdenberg et al 2006) for the primary star with its geometric parameters computed and fixed from observed V band magnitude, effective temperature and vsini.
- The secondary is assumed to be a uniform disk with given diameter.
- The flux ratio of the binary are fixed based on the their size and effective temperature

Disk model

□2D Gaussian Intensity profile with a hole in the center containing the primary star

□Rh_{maj} is fixed

□ρ is the ratio of the disk hole radii along minor and major axes

- Symmetric disk whose properties don't change from night to night
- Secondary following Kepler motion
- Fit the model to both NOI and MIRC data

Parameters	Values from model fitting	
Disk		
Flux Fraction	0.717 ± 0.006	
Radius of the hole along major axis $(RH_{maj}, mas)^{b}$	0.2213	
Ratio of the disk hole radii along minor and major axes (ρ)	0.885 ± 0.018	
Inferred disk inclination angle (°)	27.9 ± 2.3	
PA of major axis (°, East from North)	10.6 ± 3.5	
HWHM of major axis (mas)	0.343 ± 0.020	
Primary		
Flux fraction	0.1944 ± 0.001	
Radius along major axis ^b (mas)	0.2213	
Radius along major axis ^b (mas)	0.2142	
PA of major axis (°, East from North)	10.6 ± 3.5	
Secondary		
Flux fraction	0.0596 ± 0.0012	
Radius ^b (mas)	0.1205	
Total flux	0.971 ± 0.0068	
otal flux	0.971±0.0068	

Results in 2007 from

- Symmetric disk whose properties don't change from night to night
- Secondary following Kepler motion
- Fit the model to both NOI and MIRC data

		Millon Cobot at al 2010
Parameters	Values from model fitting	
Disk		000/
Flux Fraction	0.717±0.006	~ 30%
Radius of the hole along major axis $(RH_{maj}, mas)^{b}$	0.2213	
Ratio of the disk hole radii along minor and major axes (ρ)	0.885 ± 0.018	
Inferred disk inclination angle (°)	27.9 ± 2.3	
PA of major axis (°, East from North)	10.6 ± 3.5	
HWHM of major axis (mas)	0.343 ± 0.020	
Primary		-
Flux fraction	0.1944 ± 0.001	
Radius along major axis ^b (mas)	0.2213	
Radius along major axis ^b (mas)	0.2142	
PA of major axis (°, East from North)	10.6 ± 3.5	
Secondary		- /
Flux fraction	0.0596 ± 0.0012	STATE THE LEAD
Radius ^b (mas)	0.1205	Observatoire
Total flux	0.971 ± 0.0068	de la COTE d'AZOR

Results in 2007 from

- Symmetric disk whose properties don't change from night to night
- Secondary following Kepler motion
- Fit the model to both NOI and MIRC data

		Millon Cobot at al 2010
Parameters	Values from model fitting	
Disk		12
Flux Fraction	0.717 ± 0.006	
Radius of the hole along major axis $(RH_{maj}, mas)^{b}$	0.2213	
Ratio of the disk hole radii along minor and major axes (ρ)	0.885 ± 0.018	FWHM = 1.18±0.16mas
Inferred disk inclination angle (°)	27.9±2.3	
PA of major axis (°, East from North)	10.6±3.5	
HWHM of major axis (mas)	0.343 ± 0.020	10
Primary		-
Flux fraction	0.1944 ± 0.001	
Radius along major axis ^b (mas)	0.2213	
Radius along major axis ^b (mas)	0.2142	
PA of major axis (°, East from North)	10.6 ± 3.5	25 C
Secondary		- /
Flux fraction	0.0596 ± 0.0012	STATISTICS AND
Radius ^b (mas)	0.1205	Observatoire
Total flux	0.971 ± 0.0068	de la COTE d'AZUR

Results in 2007 from

- Symmetric disk whose properties don't change from night to night
- Secondary following Kepler motion
- Fit the model to both NOI and MIRC data

Millan-Gabet et al 2010 Parameters Values from model fitting Disk 0.717 ± 0.006 Flux Fraction Radius of the hole along major axis $(RH_{maj}, mas)^{b}$ 0.2213Ratio of the disk hole radii along minor and major axes (ρ) 0.885 ± 0.018 Inferred disk inclination angle (°) 27.9 ± 2.3 PA = 25±29° 10.6±3.5 PA of major axis (°, East from North) HWHM of major axis (mas) 0.343 ± 0.020 Primary Flux fraction 0.1944 ± 0.001 Radius along major axis^b (mas) 0.2213Radius along major axis^b (mas) 0.2142PA of major axis (°, East from North) 10.6 ± 3.5 Secondary Flux fraction 0.0596 ± 0.0012 Radius^b (mas) 0.1205Total flux 0.971 ± 0.0068

- Symmetric disk whose properties don't change from night to night
- Secondary following Kepler motion
- Fit the model to both NOI and MIRC data

		-
Parameters	Values from model fitting	->
Disk		
Flux Fraction	0.717 ± 0.006	
Radius of the hole along major axis $(RH_{maj}, mas)^{b}$	0.2213	
Ratio of the disk hole radii along minor and major axes (ρ)	0.885 ± 0.018	6.3±0.5% ON
Inferred disk inclination angle (°)	27.9 ± 2.3	2011-06-04 from
PA of major axis (°, East from North)	10.6 ± 3.5	
HWHM of major axis (mas)	0.343 ± 0.020	
Primary		 (Le Bouquin et al
Flux fraction	0.1944 ± 0.001	2011)
Radius along major axis ^b (mas)	0.2213	,
Radius along major axis ^b (mas)	0.2142	
PA of major axis (°, East from North)	10.6 ± 3.5	
Secondary		-
Flux fraction	0.0596 ± 0.0012	STATISTICS AND
Radius ^b (mas)	0.1205	Observatoire
Total flux	$0.971 {\pm} 0.0068$	de la COTE d'AZOR

CHARA/MIRC Observations of Periastron

- Large closure phase χ^2 indicates probable additional asymmetry from the disk
- A bright spot to represent any asymmetry on the disk
- All parameters except those related to the spot are fixed according to the global model fitting.
- Fit the spotty disk model to individual nights independently

		$10 \mathrm{th}^{(a)}$	11th	13th	16th	17th	20th	22nd
Global Model	Total χ^2	1.82	1.73	1.36	2.22	1.98	1.67	2.38
	Closure Phase χ^2	4.15	3.23	1.91	2.49	3.99	3.68	5.50
Spotty Disk	Total χ^2	0.85	1.14	0.92	1.15	1.56	0.90	1.56
	Closure Phase χ^2	1.24	1.32	1.07	1.96	2.56	1.20	3.20
	Spot flux	0.011 ± 0.001	0.010 ± 0.001	0.026 ± 0.016	0.060 ± 0.003	0.010 ± 0.001	0.012 ± 0.00	$1 0.010 \pm 0.001$
	Spot PA	290 ± 2	342 ± 4	357 ± 5	261 ± 1	341 ± 3	348 ± 2	331 ± 2
	Spot Distance	$0.86{\pm}0.07$	$1.48{\pm}0.03$	$0.49{\pm}0.03$	$1.40{\pm}0.02$	$\geq 1.50^{(b)}$	$\geq 1.50^{(b)}$	$1.18{\pm}0.04$

The spot contribute < 3% (expect 16th which has bad data quality) of total H band flux, indicating a quiescent inner disk during the periastron

Degeneracy between the relative position of the secondary and the disk.

Imaging the disk

1.5 1.0 0.5 2.0

Imaging the Disk

• Secondary position is fixed based on the global model.

Binary Mass Constrain

M2/M1×(M1+M2)^{1/3}

Miroshnichenko et al 2001

The elongated contour is caused by large error bar on parallax

Inclination Angles

- Disk plane inclination angle: 27.9°
- Binary orbital plane inclination angle: 33.97
- From photocenter analysis (Kraus et al 2011) of VLTI/AMBER data, the disk and the secondary is rotating in the opposite direction.
- The mutual angle between the disk plane and orbit plane is either 173 (close to retrograde) or 119 degree, due to the degeneracy in which side of the disk is close to us.

l'Observatoire LESIA

Summary

- Orbital parameters are revised from additional new NOI data, better constrained.
- The disk was mainly symmetry, and didn't change much during periastron
- The amount of asymmetry is about a few percent of total H band flux, and change from night to night
- Mass constrain is killed by uncertainty of the parallax
- The mutual angle between the orbit and the disk is either 173 or 119 degree

Model for the primary star

Rapidly rotating stellar model (Aufdenberg et al 2006)

Model for the primary star

Inclination (°)	40	30	25	20	17
Mass (M_{\odot})	14	14	14	14	13
Ω	0.6599	0.7899	0.8721	0.9555	0.9966
polar radius (R_{\odot})	6.754	6.450	6.170	5.712	5.193
Polar radius (mas)	0.2095	0.2001	0.1914	0.1772	0.1611
Equatorial radius (R_{\odot})	7.305	7.322	7.340	7.375	7.440
polar temperature (K)	27907	28274	28639	29310	30307
True luminosity (L_{\odot})	23590	21869	20316	17935	15767
Apparent luminosity (L_{\odot})	24807	24915	25042	25272	25625
Nonrotating luminosity (L_{\odot})	25530	23668	21987	19410	17429
Nonrotating T_{eff}	27755	27870	27976	28181	28485

 Adopt inclination=25deg model for the primary, then approximate it with a uniform ellipse
 The secondary is too small to be resolved, using UD=0.241mas based its mass
 In the model flux ratio between the binary are fixed on the size and Feff

How much can we trust the spotty model

- The distance of the spot-like asymmetry varies every day probably due to:
 - the model is too simple to reflect the true asymmetry
 - Rotational period about 0.5 1.5 days
- The most we can get out of the model is the inner part of the disk is mostly quiescent.
- If there is any, the point-like asymmetry is only about a few percent in H band flux, and probably has nothing to do with periastron passage.
- Supported by photometry observation

Georgia<u>State</u>University

 Halonen et al. (2008) find some asymmetry in the Hα line that can not be modeled by an axis-symmetry disk in 2006 away from the periastron

• Fit the model with symmetric disk to MIRC data of individual nights independently.

Datia of radii of

	Ratio to flux of the whole system	the disk hole along minor and major axes	Along major axis		
Dates	Disk Flux Fraction	$ ho^{\mathrm{a}}$	HWHM (mas) ^b	PA (°) ^c	Total χ^2
2011Jul 10 th	$0.718 {\pm} 0.008$	$0.914 {\pm} 0.032$	$0.342{\pm}0.015$	27 ± 5	1.5
2011Jul 11 th	$0.760 {\pm} 0.011$	$0.882{\pm}0.032$	$0.366 {\pm} 0.017$	20 ± 3	1.1
2011Jul 13 th	$0.715 {\pm} 0.010$	0.855 ± 0.013	$0.365 {\pm} 0.013$	-9 ± 5	0.8
2011Jul 16 th	$0.749 {\pm} 0.018$	$0.919 {\pm} 0.013$	$0.319 {\pm} 0.014$	5 ± 8	0.8
2011Jul 17 th	$0.688 {\pm} 0.007$	$0.932{\pm}0.023$	$0.314{\pm}0.014$	11 ± 6	1.9
2011Jul 20 th	$0.694{\pm}0.008$	$0.851 {\pm} 0.027$	$0.363 {\pm} 0.009$	13 ± 5	1.4
2011Jul 22 nd	$0.742{\pm}0.005$	$0.792{\pm}0.023$	$0.426{\pm}0.021$	33 ± 2	2.4

The disk is stable through MIRC observations!

