

Host stars investigations with VEGA/CHARA

R. Ligi, D. Mourard, A.-M. Lagrange, K. Perraut Observatoire de la Côte d'Azur, Nice, France.

Outline

- Context: observing host stars.
- Observations of three chosen host stars:
 - 14 And
 - υ And
 - 42 Dra
- The case of indomitable θ Cygni.
 - Results
 - Variations of the diameter
- Conclusions.

GeorgiaStateUnivers

CONTEXT

toire

Why observing host stars?

- To understand better the link between stars and the presence of exoplanets.
- Need of missing stellar parameters (radii....) and of the influence of perturbating elements (spots, LD, ...) to study stellar evolution.

Study of the sample

Exoplanets host stars observable by VEGA/CHARA, \approx 40 stars (ANR «100 Stars»: F, G or K stellar type Diameter < 2mas Mag V < 6

OBSERVATIONS OF HOST STARS

14 And

NASA Exoplanet Sci

Fundamental parameters of stars

$$\Rightarrow \text{ Radius:} \qquad R \pm \delta R = \frac{\theta_{LD} \pm \delta \theta_{LD}}{9.305 \times (\pi \pm \delta \pi)} \qquad Sato et al., 2008: \text{M} = 2.2 \text{ M}_{sol}$$

$$Furhmann et al., 1998: \text{M} = 1.27 \pm 0.06 \text{ M}_{sol}$$

$$\Rightarrow \text{ Mass:} \qquad g = -GM/R^2$$

$$\Rightarrow \text{ Effective temperature:} \qquad L = 4\pi R^2 \sigma T_{eff}^4$$

$$Star \qquad \theta_{eff} \text{ Mass}[M] \qquad \sqrt{2} \qquad \pi \qquad \text{ Radius}[R] \qquad \text{Mass}[M]$$

Star	θ_{LD} [mas]	$\chi^2_{reduced}$	π	Radius [R_{\odot}]	Mass $[M_{\odot}]$
14 And	$1.51 \pm 0.02(1.3)$	2.769	12.63±0.27(2.1)	$12.82 \pm 0.32(2.5)$	$2.60 \pm 0.42(16)$
v And	$1.18 \pm 0.01(0.9)$	6.9	74.12±0.19(0.3)	$1.70 \pm 0.02(0.9)$	$1.12 \pm 0.25(22)$
42 Dra	2.12±0.02(0.9)	0.199	10.36±0.20(1.9)	$22.04 \pm 0.48(2.2)$	$0.92 \pm 0.11(12)$

Errors dominated by the parallax!

l'Observatoire

Exoplanets parameters

$$\frac{(m_p \sin i)^3}{(m_\star + m_p)^2} = \frac{P}{2\pi G} K^3 \left(1 - e^2\right)^{3/2}$$

Eggengerger, A. et Udry, S., 2009

Sato et al., 2008: M_{pl}sini = 4.8 M_{Jup}

Curiel et al., 2011: $M_{pl}sini = 0.69, 1.98,$ 4.13 and 1.1 M_{Jup} for u And b, u And c, u And d and u And e respectively.

Döllinger et al., 2009: M_{pl}sini = 3.9 M_{Jup}

THE CASE OF INDOMITABLE θ CYGNI

θ Cygni

- M dwarf companion orbiting at 46 of angular separation, contrast of V band) (Desort et al., 2009).
- Kepler target → photometric obseled to the detection of solar-like oscillations.
- Spectroscopic observations with and SOPHIE (OHP) → quasi-per RV of ≈150 days.
 - ➔ More than 3 exoplanets? Co-o planets in resonance? (Desort 2009).

RV by Anne-Marie Lagrange with SOPHIE (OHP)

GeorgiaStateUniversity

Julian Day - 2454000

Observations

- From June 2010 to November 2011
- E2E1W2, W2W1E1 and W2W1E2
- 3 different calibrators
- Sequence of observations: cal – target – cal

→ Dispersed results!

Results

Stellar parameters Value±Error LD diameter [mas] $0.760\pm0.002(0.3)$ Radius [R_{\odot}] $1.490\pm0.006(0.4)$ Mass [M_{\odot}] $1.30\pm0.14(11)$

Radius =1.70 \pm 0.03 (Boyajian et al. 2012) Radius =1.50 \pm 0.04 (van Belle et al., 2008)

GeorgiaStateUnivers

 $\theta_{LD} = 0.861 \pm 0.015$ (Boyajian et al. 2012) Mass= 1.34 ± 0.01 (Boyajian et al. 2012) Mass = 1.38 ± 0.05 (Desort et al., 2009)

Variations of θ Cygni's diameter

Variations of θ Cygni's diameter

- Periodical radial velocity of 150 days: link with the variation of the diameter?
- Waiting for closure phases...
- Other possible causes:
 - A second unknown companion, which would exchange flux with the host star?
 - Stellar activity? (Desort et al, 2009).

CONCLUSIONS

Conclusion (1/2)

- Perspectives:
 - Direct determination of LD coefficients,
 - Need to improve the calculation of error bars.
- Improved modeling (Cesam2K):
 - T_{eff} and metallicity,
 - Mass and age.
- Good method to derive M_{pl}sini.
- To be applicated to transiting exoplanets to directly deduce planets radii.

Conclusion (2/2)

- Validity of the measurements with the observations of 14 And, υ And and 42 Dra.
- θ Cygni shows dispersed results, but the other measurements prove that VEGA provide good quality data.
 - \rightarrow Intrinsic variations from the star?
- We know that this star has been showing interesting but not understood patterns since it has been observed.

→ Star not fully understood yet, the investigations continues...

Thank you for your attention