Yes, CHARA Can Image Cool Starspots, But Can It See Them Move?

* A Case Study of Lambda Andromedae

Rob Parks
Georgia State University
03/01/2012
Committee and Collaborators

Advisor
Dr. Russel White

Committee
Dr. Douglas Gies
Dr. Gary Hastings
Dr. Hal McAlister
Dr. John Monnier (UM)
Dr. Peter Plavchan (NExScI)
Dr. James Sowell (GaTech)

Collaborators
Dr. Fabien Baron (UM)
Dr. Greg Henry (TSU)
Dr. Gail Schaefer (CHARA/GSU)

Special Thanks
Xiao Che (UM)
Brian Kloppenborg (UD)
The CHArA team
Goals

Strassmeier et al. 2003

HD 171488 average temperature map

Strassmeier 1999
Goals

• Directly image cool starspots
 – Precisely measure cool starspot properties

• Observe stellar rotation via cool starspot motion

• Develop techniques for imaging other active stars → compare with Doppler maps
“Lambdy Andy”

G8 III
SB1
\(\pi = 38.74 \pm 0.68 \text{ mas} \)
D ~ 25 pc
\(\text{vsini} = 6.5 \text{ km/s} \)
\(P_{\text{phot}} = 54.33 \text{ days} \)
\(H \text{ mag} = 1.501 \)
\(\Delta V \text{ mag} = 0.22 \)
\(\theta \sim 2.75 \text{ mas} \)
Fig. 2.—1976–1991 V light curve of λ And from the data sources listed in Table 1. Each point is the mean of (usually) three differential observations in the sense of λ And minus Ψ And. While the 54 day rotation period is difficult to see at this scale, the changing amplitude of the spot wave and the long-term variations in mean magnitude are readily apparent.
Lam And Light Curve 2007-2011
CHARA Observations

MIRC – H band
R ~ 40
27 epochs
11/17/07 to 10/24/12
Evolving observing strategy
Lam And

Aug 17th, 2008
S1-E1-W1-W2
Aug 25th, 2009
S1-E1-W1-W2 &
S2-E2-W1-W2
Aug 24th & 25th, 2010
S1-E1-W1-W2 &
S2-E2-W1-W2
Lam And

Sept 19th, 2011
S1-S2-E1-E2-W1-W2
Parametric Model & Reconstructions

MODEL

Power-law limb darkening

2 stellar parameters
 • θ, α

N spot parameters
 • (φ, b, l, f) per spot

Downhill simplex

MACIM & BSMEM
First find stellar diameter and limb darkening coefficient only using 1^{st} lobe visibility data

$\theta: 2.777 \pm 0.027$ (mas)

$\alpha: 0.241 \pm 0.014$

$R_{\text{star}} = 9.64 \pm 0.19 \ R_{\text{sun}}$
Observing Cadence: ~ 8 days (15%)
Observing Cadence: ~ 8 days (15%)
Are These Spots Real?

- Consistency between models and reconstructions

- Consistent spot parameters
 - $\varphi = 0.101 \pm 0.033$
 - $F_{sp}/F_{ph} = 0.789 \pm 0.035$

- Starspot temperature consistent with expectations
 - $\Delta T \sim 500$ K
Rotation?
<table>
<thead>
<tr>
<th>Spot</th>
<th>Parameter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>φ</td>
<td>0.076</td>
<td>0.080</td>
<td>---</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>17.32</td>
<td>43.93</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>l</td>
<td>0.76</td>
<td>65.45</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.84</td>
<td>0.76</td>
<td>---</td>
<td>0.08</td>
</tr>
<tr>
<td>B</td>
<td>φ</td>
<td>0.098</td>
<td>0.10</td>
<td>---</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>0.13</td>
<td>18.39</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>l</td>
<td>-</td>
<td>-27.94</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.80</td>
<td>0.79</td>
<td>---</td>
<td>0.01</td>
</tr>
<tr>
<td>C</td>
<td>φ</td>
<td>0.14</td>
<td>0.14</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>12.08</td>
<td>40.36</td>
<td>38.34</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>l</td>
<td>-</td>
<td>28.96</td>
<td>50.19</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.79</td>
<td>0.76</td>
<td>0.81</td>
<td>0.03</td>
</tr>
<tr>
<td>D</td>
<td>φ</td>
<td>0.072</td>
<td>0.075</td>
<td>---</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>5.77</td>
<td>22.77</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>l</td>
<td>-</td>
<td>-15.11</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Observing Cadence: ~ 4 days (7%)
Observing Cadence: ~ 4 days (7%)
Amoeba solutions highly dependent on initial positions and search scales.