To SFP or not to SFP?

Deepak Raghavan Chris Farrington Theo ten Brummelaar Hal McAlister CHARA Team

Georgia State Univer

Exploring a Presumed Gap

- Radial velocity surveys go inside out
 - Periods out to low tens of years
- "Traditional" visual methods go outside in
 - Down to a few tens of mas
- Is there a gap between these two that might be ideally suited for CHARA's long baselines?
- Gap between spectroscopic and visual techniques previously seen
 - Bouvier et al. 1997, Mason et al. 1998

bservatoire LESIA OF NEXICI CSUS

Visual

- Efficient for surveys (> 20 targets per night)
 - V \leq 9, K \leq 6, Dec \geq -10°, Δ K \leq 2, separations ~ 10 120 mas
 - Can detect early M for G primary and mid M for K primary ($q \ge 0.5$)
- 196 targets + 92 observed by CF
- 233 null detections, 8 companions seen

0 new

Popular Stars Attract Attention!

- Excellent spectroscopic coverage
 - Longstanding RV studies over 30 years, \pm 0.5 km/s precision
 - High-precision measures over 12 years, \pm 3 m/s precision
 - Can detect orbits of few tens of years
 - Separations out to 400 mas (P=30y, M_{sum} =1.5 M_{Sun} , d= 20pc, i=45°)
- Augmented by extensive high-resolution visual coverage

Observatoire

- All 453 targets observed by speckle interferometry at least once

LESIA

Spectroscopic

Visual

×

- Separations \geq 30 mas

GeorgiaStateUniver

So What is One to Do?

- Use null results in overall multiplicity statistics
- Publish null results and detection limits
 - CHARA paper # 67. A Search for Separated Fringe Packet Binaries Using the CHARA Array, D. Raghavan et al., The Astrophysical Journal, 745, 24, 2012.
- Help define the utility of the SFP technique for possible future companion searches at CHARA

Here is How SFPs Are Seen

Here's How a Single Star Looks

Modeling tool: fakecc

- Generates fake fringes
- Output in FIT file just like observing software
- Can run through same reduction pipeline as real

data

```
usage: fakecc {flags}
Flags:
-b[baseline]
                         Set baseline (100m)
-B[balance]
                         Set beam balance 0-1 (1.0)
                         Force CALIBRATOR (OBJECT)
-c
-C[gain, bias, read]
                         Set camera parameters (1,10,9)
-f[samp,frg]
                         Set sample and fringe frequency (1000,200)
-F[lambda,bw]
                         Set filter in um (K band).
                         Print this message.
-h
-H[HD#]
                         Set the HD number (None)
                         Set scintillation f0 (0.0 - NOT WORKING!)
-I[F0]
-n[Nph]
                         Set mean photon count (500)
-p[r0(cm),vel(m/s)]
                         Set seeing for piston error (10,10)
-r[range]
                         Set dither range (200um)
                         Set shutter sequence length (10,66,200)
-s[A, B, D]
-S[V,pos,beta]
                         Set secondary star (none)
-v[V]
                         Set visibility (0.5)
```


bservatoire

Model SFP: Separation Impact Pair of G0 V stars, r0 = 10 cm

Model SFP: Seeing Impact

G0-G5 pair, ρ = 50 mas

r0 = 20 cm

1 mg

a WAY h

W MM I

Am

200 300 400 500 800 Relative offset

)bservatoire

LESIA

400

Georgia<u>State</u>University

NASA Exoplanet Science Institut

Model SFP: Contrast

G0 V primary, r0 = 10 cm, ρ = 50 mas

Model SFP: Contrast

Model SFP: Contrast

Back To Real Data

• Marginal SFP detections of known companions to HD 98231 and HD 137763

Modeling Results Summary

- Projected separation range: 8 80 mas
 - On the Array's longest baseline
 - Using fringe scan windows 145 μ m wide
- Seeing: r0 > 6 cm can readily detect SFP fringes
- Contrast:
 - $-\Delta K \le 1.1$ for clean detection (above side-lobes)
 - G0 K5, G5 K5, K0 M0
 - $-\Delta K \le 1.6$ if widely enough separated to avoid side-lobes
 - G0 M0, G5 M0, K0 M2

Applicability of Technique

- For companion searches
 - Choose unpopular stars, avoid the paparazzi
 - Choose distant stars
 - At 200 pc, P = 20 yr, $M_{sum} = 5$ M_{Sun} implies a = 60 mas
 - K < 8 for A5 V and earlier stars at 200 pc
 - Survey project for O, B, A stars?
- For visual orbit determination using SFP
 - See Chris Farrington's talk!
- CLIMB is a lot more efficient in searching for and characterizing binaries

