Stellar Angular Diameters from CHARA & NPOI Data (Plus Some Other Stuff)

Ellyn Baines
Naval Research Laboratory
ellyn.baines@nrl.navy.mil

The CHARA Array:
Hal McAlister, Theo ten Brummelaar, Nils Turner, Judit Sturmann, Laszlo Sturmann, Christopher Farrington, Norm Vargas, + others

Naval Research Laboratory:
Thomas Armstrong
Henrique Schmitt
Up for discussion:

- HR 8799: final final CHARA results
 This time I mean it!

- CHARA target HR 2582

- NPOI targets ε Eri & κ Oph

- Imaging GEOSats with the NPOI
HR 8799’s Close Up

- Companion type? Star’s age & [Fe/H]? It’s a λ Boo star, so...?
- Observed using the CHARA Array
 - 7 nights, 2010 – 2011
 - 5 calibrators (3 used in the paper)

Companion location if star is young → exoplanets

Companion location if star is older → brown dwarfs

Marois et al. (2008)

Marois et al. (2010)
Our results agree with a young age for the star, so we confirm imaged companions are exoplanets.

If star is contracting onto ZAMS

If star is expanding from ZAMS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{LD}</td>
<td>0.342 ± 0.008 mas</td>
</tr>
<tr>
<td>R</td>
<td>$1.44 \pm 0.06 , R_\odot$</td>
</tr>
<tr>
<td>T_{eff}</td>
<td>7193 ± 10 K</td>
</tr>
<tr>
<td>L</td>
<td>$5.05 \pm 0.29 , L_\odot$</td>
</tr>
<tr>
<td>M_{star}</td>
<td>$1.52 \pm 0.03 , M_\odot$</td>
</tr>
<tr>
<td>Age</td>
<td>$33^{+7}_{-13.2}$ Myr</td>
</tr>
<tr>
<td>M_{star}</td>
<td>$1.51 \pm 0.02 , M_\odot$</td>
</tr>
<tr>
<td>Age</td>
<td>90^{+381}_{-50} Myr</td>
</tr>
</tbody>
</table>
CHARA Target HR 2582

- G6 or K0 III star

- Observed using CoRoT for stellar oscillations
 They found some!

- Observed using the CHARA Array in Dec. 2012
Why it’s interesting

• M, R, and age are challenging because L and T_{eff} are poorly constrained.

• HR 2582 appears to be more massive than normal red clump stars \rightarrow implies rapid evolution

• Unknown if star is:
 – H-shell burning on ascending red giant branch?
 – burning He in a later stage?
CoRoT Results

• Observed HR 2582 for 55 days (Baudin et al. 2012)

• Used complementary spectroscopic observations to determine:
 – $T_{\text{eff}} = 4665 \pm 200$ K
 – $\log g = 1.4 \pm 0.3$ cm s$^{-2}$
 – $[\text{Fe/H}] = -0.18 \pm 0.14$
 – $L = 2.70 \pm 0.15 \, L_{\odot}$
 – $R \sim 34 \pm 8 \, R_{\odot}$

$$\nu_{\text{max}} \approx \frac{M/M_{\odot}}{\left(\frac{R}{R_{\odot}}\right)^2 \sqrt{T_{\text{eff}}/T_{\text{eff, Sun}}}}$$

Power density spectrum, $\nu_{\text{max}} = 15 \pm 1 \, \mu\text{Hz}$

$M \sim 5.2 \pm 2.9 \, M_{\odot}$
CHARA Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ (mas)</td>
<td>1.00 ± 0.02</td>
</tr>
<tr>
<td>R (R_\odot)</td>
<td>35.8 ± 5.3</td>
</tr>
<tr>
<td>T_{eff} (K)</td>
<td>4712 ± 151</td>
</tr>
<tr>
<td>M (M_\odot)</td>
<td>5.7 ± 0.5</td>
</tr>
<tr>
<td>Age (Myr)</td>
<td>160 ± 20</td>
</tr>
</tbody>
</table>

H-shell burning in 1$^{\text{st}}$ ascending branch: 157 Myr
Core He-burning in 1$^{\text{st}}$ ascending branch: 163 Myr
Core He-burning in 2$^{\text{nd}}$ ascending branch: 180 Myr
Exoplanet Host Star ε Eri

- Measured angular diameter
- Calculated T_{eff}, R, L
- Used T_{eff}, R with Y^2 isochrones to estimate M_{star}
- Combined M_{star} with $f(m)$ and i to calculate M_{planet}
- Used T_{eff} to determine HZ (0.5 to 1.0 AU)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{LD}</td>
<td>$2.153 \pm 0.028 \text{ mas}$</td>
</tr>
<tr>
<td>R</td>
<td>$0.74 \pm 0.01 \ R_{\odot}$</td>
</tr>
<tr>
<td>T_{eff}</td>
<td>$5039 \pm 126 \ K$</td>
</tr>
<tr>
<td>L</td>
<td>$0.32 \pm 0.03 \ L_{\odot}$</td>
</tr>
<tr>
<td>M_{star}</td>
<td>$0.82 \pm 0.05 \ M_{\odot}$</td>
</tr>
<tr>
<td>M_{planet}</td>
<td>$1.55 \pm 0.24 \ M_{\text{Jupiter}}$</td>
</tr>
</tbody>
</table>
Asteroseismology Target κ Oph

- Observed using NPOI Feb. & March 2013
- Used \(\Delta \nu_{\text{max}} \) from Stello et al. (2009) to determine mass:

\[
\Delta \nu_{\text{max}} = \frac{M T^{3.5}}{L}
\]
NPOI Results

This is the only method to measure the mass of a single star.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>% err</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{LD}</td>
<td>3.68 ± 0.01 mas</td>
<td>0.3</td>
</tr>
<tr>
<td>R</td>
<td>11.1 ± 0.1 R_\odot</td>
<td>1</td>
</tr>
<tr>
<td>T_{eff}</td>
<td>4679 ± 113 K</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>53.1 ± 5.1 L_\odot</td>
<td>10</td>
</tr>
<tr>
<td>M_{star}</td>
<td>3.9 ± 0.5 M_\odot</td>
<td>13</td>
</tr>
</tbody>
</table>

There are 7 other targets with stellar oscillation observations and archival NPOI data:
• $1.32 \leq \theta \leq 3.01$ mas; $0.80 \leq R_{star} \leq 9.98$ R_\odot
• $4863 \leq T_{eff} \leq 6349$ K
• $2.8 \leq M_{star} \leq 4.8$ M_\odot
And now for “some other stuff”
Imaging GEOsats with the NPOI

• Objective:
 – Address space situational awareness needs by using the NPOI to observe geostationary satellites (GEOsats)
 – Build on previous fringe detection of GEOsat by NPOI to create an image

• We want to answer the questions:
 – What is the GEOsat orientation, configuration?
 – Is there major damage to the GEOsat?
 – Are the GEOsats at risk?
The Challenge

Imaging is difficult because GEOsats are:

• Complex

• Faint, usually 10^{th}-14^{th} magnitude

• Small in apparent size
 – $\sim 40,000$ km away
 – 2 to 50 m in physical size \Rightarrow 10 to 250 mas in angular size
 – Single telescope would need an aperture of 40-60 m

The technology developed to interferometrically image stars is directly applicable to imaging GEOsats.
NPOI Observations During Glint

During glint:
- GEOsats brighten from 10-14th magnitude up to 1st
- Occurs twice a year
- Lasts ~10 minutes each night for a week
Previous Detection

3 March 2009
Single-baseline detection

Fringe strength vs. Wavelength (nm)

Reduced $\chi^2 = 0.97$

- small, bright element (1 m)
- large, diffuse element (\geq3 m)

Artist’s conception:

NPOI stations used:

- W7
- AN
- AW
- E6
- E7
- N7
- AE
- AC

Single-baseline detection

20 60
-20 -20
-60 60
Distance from center (m)
Distance from center (m)
Experiment Approach

1. Observe GEOsats, including NRL’s microsatellite
 - Maneuverable, in sub-GEO track

2. Simulations
 - Develop computer models; learn how much information can be derived from observations

3. Apply observing and data processing techniques
 - Implement multiple baseline measurements
 - Remove atmospheric effects from the data
Applicable Techniques

- **Baseline bootstrapping**
 - Build up to the long B in small increments

- **Phase closure**
 - Remove atmospheric phase effects by summing over a triangle

- **Coherent averaging**
Coherent Averaging

- Ongoing collaboration with A. Jorgensen, New Mexico Tech
- Start with a sequence of fringe measurements
- Fit a function to characterize atmospheric phase effects, compensate, and average
- Result: fringe phase + amplitude with higher SNR

NPOI Observations of υ Oph
GEOsat Image Quality

Simulation with realistic noise...

...apply coherent averaging...

...and assume perfect phase closure