

Stellar Angular Diameters from CHARA & NPOI Data (Plus Some Other Stuff)

> Ellyn Baines Naval Research Laboratory ellyn.baines@nrl.navy.mil

The CHARA Array: Hal McAlister, Theo ten Brummelaar, Nils Turner, Judit Sturmann, Laszlo Sturmann, Christopher Farrington, Norm Vargas, + others

Naval Research Laboratory: Thomas Armstrong Henrique Schmitt

Up for discussion:

- HR 8799: final *final* CHARA results This time I mean it!
- CHARA target HR 2582
- NPOI targets ε Eri & κ Oph
- Imaging GEOsats with the NPOI

HR 8799's Close Up

- Companion type? Star's age & [Fe/H]? It's a λ Boo star, so...?
- Observed using the CHARA Array
 - 7 nights, 2010 2011
 - 5 calibrators (3 used in the paper)

Companion location if star is young \rightarrow exoplanets

GeorgiaStateUniversity

Companion location if star is older \rightarrow brown dwarfs

bservatoire

LESIA

CHARA/NPOI 2013 Science & Technology Review

PAVO Results

CHARA Target HR 2582

• G6 or Ko III star

- Observed using CoRoT for stellar oscillations They found some!
- Observed using the CHARA Array in Dec. 2012

Why it's interesting

- M, R, and age are challenging because L and T_{eff} are poorly constrained.
- HR 2582 appears to be more massive than normal red clump stars → implies rapid evolution
- Unknown if star is:
 - H-shell burning on ascending red giant branch?

LESIA

- burning He in a later stage?

CoRoT Results

Observed HR 2582 for 55 days (Baudin et al. 2012)

bservatoire

-LESIA

- Used complementary spectroscopic observations to determine:
 - $T_{\rm eff} = 4665 \pm 200 \, {\rm K}$
 - $-\log g = 1.4 \pm 0.3 \text{ cm s}^{-2}$
 - [Fe/H] = -0.18 \pm 0.14
 - *L* = 2.70 ± 0.15 *L*_{\odot}
 - R ~ 34 ± 8 R_{\odot}

GeorgiaStateUniversity

CHARA Results

Parameter	Result
heta (mas)	$\textbf{1.00}\pm\textbf{0.02}$
R (R _☉)	35.8 ± 5.3
Т _{eff} (К)	4712 ± 151
М (М _о)	5.7 ± 0.5
Age (Myr)	160 ± 20

H-shell burning in 1st ascending branch: 157 Myr
Core He-burning in 1st ascending branch: 163 Myr
Core He-burning in 2nd ascending branch: 180 Myr

bservatoire

LESIA

Exoplanet Host Star ϵ Eri

- Measured angular diameter
- Calculated T_{eff}, R, L
- Used T_{eff} , R with Y² isochrones to estimate M_{star}
- Combined M_{star} with f(m) and i to calculate M_{planet}
- Used T_{eff} to determine HZ (0.5 to 1.0 AU)

Parameter	Value	
$\theta_{\rm LD}$	$\textbf{2.153} \pm \textbf{0.028} \text{ mas}$	
R	$0.74\pm0.01R_{\odot}$	
$T_{ m eff}$	$5039\pm126~\mathrm{K}$	
L	$0.32\pm0.03~L_{\odot}$	
$M_{\sf star}$	$0.82\pm0.05~M_{\odot}$	
$M_{\sf planet}$	$1.55\pm0.24~M_{ m Jupiter}$	

ΗZ

*

Planet orbit

CHARA/NPOI 2013 Science & Technology Review

Asteroseismology Target κ Oph

bservatoire

LESIA

- Observed using NPOI Feb. & March 2013
- Used Δv_{max} from Stello et al. (2009) to determine mass:

$$\Delta v_{\rm max} = \frac{M T^{3.5}}{L}$$

NPOI Results

This is the only method to measure the mass of a single star.

Parameter	Value	% err
$\theta_{\rm LD}$	$3.68\pm0.01\ mas$	0.3
R	$11.1\pm0.1~R_{\odot}$	1
$T_{ m eff}$	$4679\pm113~\mathrm{K}$	2
L	$53.1\pm5.1~L_{\odot}$	10
$M_{\rm star}$	$3.9\pm0.5~M_{\odot}$	13

There are 7 other targets with stellar oscillation observations and archival NPOI data:

- 1.32 $\leq \theta \leq$ 3.01 mas; 0.80 $\leq R_{star} \leq$ 9.98 R_{\odot}
- $4863 \le T_{\rm eff} \le 6349 \, {\rm K}$
- 2.8 \leq $M_{\rm star} \leq$ 4.8 M_{\odot}

CHARA

And now for "some other stuff"

Imaging GEOsats with the NPOI

- Objective:
 - Address space situational awareness needs by using the NPOI to observe geostationary satellites (GEOsats)
 - Build on previous fringe detection of GEOsat by NPOI to create an image
- We want to answer the questions:
 - What is the GEOsat orientation, configuration?
 - Is there major damage to the GEOsat?
 - Are the GEOsats at risk?

The Challenge

Imaging is difficult because GEOsats are:

- Complex
- Faint, usually 10th-14th magnitude
- Small in apparent size
 - ~40,000 km away
 - 2 to 50 m in physical size \rightarrow 10 to 250 mas in angular size
 - Single telescope would need an aperture of 40-60 m

The technology developed to interferometrically image stars is directly applicable to imaging GEOsats.

bservatoire

-LESIA

NPOI Observations During Glint

During glint:

- GEOsats brighten from
 10-14th magnitude up to 1st
- Occurs twice a year
- Lasts ~10 minutes each
 night for a week

CHARA/NPOI 2013 Science & Technology Review

bservatoire - LESIA

GeorgiaStateUniversity

Previous Detection

Artist's conception:

NPOI stations used

Experiment Approach

- 1. Observe GEOsats, including NRL's microsatellite
 - Maneuverable, in sub-GEO track
- 2. Simulations
 - Develop computer models; learn how much information can be derived from observations
- 3. Apply observing and data processing techniques
 - Implement multiple baseline measurements
 - Remove atmospheric effects from the data

Applicable Techniques

bservatoire

LESIA

Baseline bootstrapping

 Build up to the long B in small increments

- Phase closure
 - Remove atmospheric phase effects by summing over a triangle
- Coherent averaging

Coherent Averaging

- Ongoing collaboration with A. Jorgensen, New Mexico Tech
- Start with a sequence of fringe measurements
- Fit a function to characterize atmospheric phase effects, compensate, and average
- Result: fringe phase + amplitude with higher SNR

- CHARA/NPOI 2013 Science & Technology Review

GEOsat Image Quality

Simulation with realistic noise...

GeorgiaStateUniversity

... apply coherent averaging...

... and assume perfect phase closure

