

MIRC imaging of two red supergiants from the Double Cluster

F. BARON^{1,8}, J. D. MONNIER¹, L.L. KISS^{2,3}, H. R. NEILSON⁴, M. ZHAO⁵, M. ANDERSON¹, A. AARNIO¹, E. PEDRETTI⁶, N. THUREAU⁶, T.A. TEN BRUMMELAAR⁷, H.A. MCALISTER^{7,8}, J. STURMANN⁷, L. STURMANN⁷, N. TURNER⁷
 ¹Department of Astronomy, University of Michigan, 918 Dennison Building, Ann Arbor, MI48109-1090, USA;
 ² Sydney Institute for Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia;
 ³ Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary;
 ⁴ Department of Physics & Astronomy, East Tennessee State University, Box 70652, Johnson City, TN 37614, USA;
 ⁵ Department of Astronomy & Astrophysics, Penn State University, University Park, PA 16802, USA;
 ⁶ Department of Physics & Astronomy, University of St. Andrews, Scotland, UK;
 ⁷ The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965, USA; and
 ⁸ CHARA and Department of Physics & Astronomy, Georgia State University, P. O. Box 4106, Atlanta, GA 30302-4106, USA.

RSGs and long baseline interferometry

- Temperature scales
 - Before: Levesque 2005, SED fitted by MARCS models
 - van Belle 2009: SED fitted by RSG templates (Pickles 1998) + PTI angular diameters
- Only two model-independent images: Betelgeuse and VX Sgr
- Betelgeuse
 - Young 2000: spots in the V, but not in J
 - Haubois 2009: image, two spots, somewhat inconsistent with modeling
- VX Sgr
 - Monnier 2004: asymmetries detected
 - Chiavassa 2010: image but asymmetries barely resolved

RSG images so far...

CHARA/NPOI 2013 Science & Technology Review

T Per and RS Per

	mV	mH	Spec type	D Cluster
T Per	8.54	3.02	M2Iab	h Per/chi Per
RS Per	8.73	2.11	M4Iab	chi Per

Date (UT)	Target	N_{block}	Calibrators	Flux calibration
2007 Jul 28	T Per	2	HD 9022	Chopper
2007 Jul 29	T Per	1	v And	Fiber
2007 Jul 30	RS Per	1	v And	Chopper
2007 Jul 31	RS Per	1	37 And	\mathbf{DAQ}
2007 Aug 2	RS Per	2	σ Cyg, υ And	DAQ

Note. — Calibrator diameters (mas): HD $9022 = 1.05 \pm 0.02$ (Mérand et al. 2005). $v \text{ And} = 1.097 \pm 0.009$ (Zhao et al. 2011), UD model. $37 \text{ And} = 0.676 \pm 0.034$, Kervella & Fouqué (2008). σ Cyg = 0.542 ± 0.021 Mérand 2008, private comm.

Double Cluster distance: $d = 2345 \pm 55 \text{ pc}$

Main goals

Bolometric flux and angular diameter will give the temperature

$$T_{\rm eff} = 4162 \left(\frac{f_{\rm bol}}{10^{-10} {\rm W.m^{-2}}}\right)^{\frac{1}{4}} \left(\frac{\theta}{1 {\rm mas}}\right)^{-\frac{1}{2}} K$$

- part of the bolometric flux does not arise from the photosphere, SED models needed
- Other physical parameters: size, mass, log g
- Model of the surface brightness: spots ?
- Model-independent images

CHARA/NPOI 2013 Science & Technology Review

SED – RS Per

CHARA

- SED fitting
- Spectra de-reddened using:
 - Castelli 1989 and Fitzpatrick 1999 with custom extinction laws for RSGs from Massey 2005
 - Distance estimate for the Double Cluster $~d=2345\pm55~{
 m pc}$
- Atmosphere models:
 - Issue = RSGs have cool (lines) + extended (non-plane-parallel) atmospheres
- Latest SATLAS (Lester 2008) atmosphere code:
 - Temperature range T=3000-4000 K
 - Low metallicities (typical of Double Cluster)
 - Mass range $M=7-25M_{\odot}$
 - Gravity $\log g = -0.5$ to 0.5
 - Turbulence $\chi_t=3-5km/s$

Model fitting - (*u*,*v*) coverage

Model fitting – spotless model

T Per

Bayesian model selection

- Classic model fitting:
- Model Data Model i coefficients $p(\boldsymbol{C}|\boldsymbol{M}_i) \propto p(\boldsymbol{C}|\boldsymbol{D}, \boldsymbol{M}_i)p(\boldsymbol{C}|\boldsymbol{M}_i)$ Likelihood / χ^2 Posterior **Priors** • True Bayes equation: $p(C|M_i) = \frac{p(C|D, M_i)p(C|M_i)}{p(D|M_i)}$
- Model selection:

Evidence

 $\frac{p(\boldsymbol{M_1}|\boldsymbol{D})}{p(\boldsymbol{M}_2|\boldsymbol{D})} = \frac{p(\boldsymbol{M}_1)}{p(\boldsymbol{M}_2)} \frac{p(\boldsymbol{D}|\boldsymbol{M_1})}{p(\boldsymbol{D}|\boldsymbol{M}_2)}$ 1 if no preference

Bayes factor = ratio of evidences

Nested sampling (MULTINEST, Feroz 2008) can evaluate: $\log Z(\boldsymbol{M_i}) = \log p(\boldsymbol{D}|\boldsymbol{M_i})$

Bayesian Interpretation

-1.0

-1.5

bservatoire - LESIA

-1.5

-1.0

-0.5 0.0 0.5 Right Ascension (mas)

0.5

1.0

1.5

2

0 Right Ascension (mas)

-1

-2

Observatoire

1

	Fit results		No spot	Dark spot	Bright spot	Two spots
T Per results	$\begin{array}{c} \chi^2 \\ \log Z \\ \theta_\star \\ f_{\rm spot} \end{array}$	(±0.02)	$9.4 \\ -0.35 \\ 2.01 \\ \dots$	$2.24 \\ 0.87 \\ 2.03 \\ 4 \%$	$2.64 \\ 1.23 \\ 2.05 \\ 5\%$	$1.95 \\ 0.20 \\ 2.04 \\ 3\%, 4\%$
	$\log_{10}(B_1$		(₀)	B ₁₀	Evidence a	gainst H ₀
tion of differences of log 7		0 to 1/2	2 11	to 3.2	Not worth mor mention	e than a bare
961, Kass & Raftery 1995)		1/2 to 1 1 to 2 >2	1 3.2 10 >1	2 to 10 to 100 100	Substantial Strong Decisive	
	T Per - model image for one spot			RS Per - model image for one spot		
Best models	0.0 0.0 0.0	(Jeclination (mas)		

Interpretation of diffe (Jeffreys 1961, Kass &

Georgia<u>State</u>University

Observatoire

RSG temperature scales

Image reconstruction

• A reminder of the principle

$$\widehat{i} = \underset{i \in \mathbb{R}^{n}}{\operatorname{argmin}} \left\{ \chi^{2}(i) + \underset{k=1}{\overset{K}{\underset{j \in \mathbb{R}^{n}}{\underset{j \in \mathbb{R}^{n}}}{\underset{j \in \mathbb{R}^{n}}{\underset{j \in \mathbb{R}^{n}}}{\underset{j \in \mathbb{R}^{n}}}{\underset{j \in \mathbb{R}^{n}}}{\underset{j \in \mathbb{R}^{n}}}}}}}}}}}}}}}}$$

- We use the SQUEEZE image reconstruction code (Baron 2010)
 - MCMC, parallel tempering
 - Tries to find the global minima
 - Not as sensitive to initialization as simulated annealing
 - Multi-threaded + SSE optimizations

LESIA

Regularization - regularizers

• Multiplicity/Maximum entropy (Sutton et al., 2006)

$$R_{\Gamma}(\boldsymbol{i}) = \sum_{n} \log \Gamma(i_n + 1)$$

• Total variation (Rudin 1992, Renard et al., 2011)

$$R_{\mathrm{TV}}(\boldsymbol{i}) = \ell_1(\boldsymbol{g}) = \sum_n |g_n|$$

$$g_{n,m}(\mathbf{i}) = \sqrt{|i_{n+1,m} - i_{n,m}|^2 + |i_{n,m+1} - i_{n,m}|^2}$$

• Spot regularizer (Baron et al., 2013)

$$R_{\text{spot}}(\boldsymbol{i}) = \ell_{\frac{1}{2}}(\boldsymbol{g}) = \left(\sum_{n} \sqrt{|g_n|}\right)^2$$

Final reconstructions

CHARA/NPOI 2013 Science & Technology Review

Note: artifact tests were successful, i.e spotless disks were reconstructed spotless *https://github.com/bkloppenborg/oifits-sim*

Conclusion

- Bayesian model selection and Compressed Sensing regularizer were required to extract all information from the data
- This constitutes more evidence for spots in near-infrared
- Considering the opacity minimum in H band
 - these spots should be close to the photosphere...
 - contrast cannot be explained readily by opacity...
- More observations required
 - link between circumstellar activity and spots ?
 - work ongoing on AZ Cyg

