



# The CHARA/FLUOR survey of debris disk stars: results and statistics

O. Absil, <u>D. Defrère</u>, V. Coudé du Foresto, E. di Folco, A. Mérand, J.-C. Augereau, S. Ertel, C. Hanot, P. Kervella, B. Mollier, N. Scott, X. Che, J.D. Monnier, N. Thureau, P.G. Tuthill, T.A. ten Brummelaar, H.A. McAlister, J. Sturmann, J. Sturmann, and N. Turner























# Zodiacal dust in the Solar system

- Within ~1 AU, the inner solar system is filled with dust near the ecliptic plane
- Origin:
  - Comets (90%, Nesvorny et al. 2010)
  - Asteroid collisions
- It's not a smooth cloud:
  - Dust bands: asteroids families?
  - Resonant ring caused by the Earth















### Why we care about exozodiacal dust?

### **Exozodiacal dust** = dust clouds in and around the habitable zone of stars

#### 1.Understand exoplanetary systems

- Planetary system formation and evolution theories
- Dust-planet interaction
- 2.Prepare future exo-Earth imaging missions
  - Solar zodiacal cloud ~300 times brighter than Earth (IR and Visible)
  - Asymmetric features can mimic the planetary signal



















# What do we know?

- Single-dish photometry
  - ✓ Spitzer:  $\sim$ 1% of 152 main-sequence stars (Lawler et al., 2009)
  - ✓ WISE:  $\sim$ 1% of 350 main-sequence stars (Morales et al. 2012)
  - ✓ Sensitivity threshold ~1000 zodis
- Infrared interferometry
  - ✓ KIN : ~10 detections out of 41 main-sequence stars (Millan-Gabet et al., 2011, Mennesson et al. in prep).
  - ✓ VLTI/MIDI: HD 69830 and  $\eta$  Crv (Smith et al., 2009), HD 113766 and HD 172555 (Smith et al. 2012),  $\beta$  Pic (di Folco et al., in prep).





















# The observing challenge

- High contrast ( $\geq 1:100$ )
- Small angular separation
  - ✓ Inner disc: a few 10 mas
  - ✓ Requires IR interferometry





# Detection strategy



- Disc larger than angular resolution  $(\lambda/b) \rightarrow$  incoherent flux
- Induces a visibility deficit at all baselines
- Best detected at short baselines





# Detection strategy

- Disc larger than angular resolution  $(\lambda/b) \rightarrow$  incoherent flux
- Induces a visibility deficit at all baselines
- Best detected at short baselines





# Origin of the survey



- First detection in 2005 around Vega (Absil et al. 2006):
  - Initial excess detection of 1.29% +/- 0.19% in the K-band
  - Confirmed 1-year later by IOTA/IONIC in the H-band (Defrère et al. 2011)





## First results of the survey

- Survey initiated in Fall 2006:
  - ✓ Paper 2 (di Folco et al. 2007): two stars one detection ( $\tau$  Ceti , G8V, ~10Gyr,).
  - ✓ Paper 3 (Absil et al. 2008): 7 additional stars -- one detection (ζ Aql, companion thought to be a possibility at that time)







#### Survey overview 1. The target sample

#### • Selection criteria:

- ✓ Well sampled across spectral types;
- ✓ Similar quantity of stars with and without outer dust disks;
- ✓ No binary (<5").</p>
- The final sample:

|                    | Α  | F  | G-K | Total |
|--------------------|----|----|-----|-------|
| Outer reservoir    | 7  | 7  | 5   | 19    |
| No outer reservoir | 5  | 8  | 10  | 23    |
| Total              | 12 | 15 | 15  | 42    |



















### Survey overview 2. Observing schedule

| 2006<br>91 OBs on 14 stars | 2007<br>2007A: fire shutdown<br>2007B: 8 OBs on 14 stars | 2008<br>85 OBs on 17 stars |  |
|----------------------------|----------------------------------------------------------|----------------------------|--|
|                            |                                                          |                            |  |
| 2009                       | 2010                                                     | 2011                       |  |
| 108 OBs on 20 stars        | 76 OBs on 12 stars                                       | 2011A: 127 OBs on 14 stars |  |
|                            |                                                          |                            |  |
|                            |                                                          |                            |  |





























#### 2008-2009 FLUOR data



2010 coronagraphic image (Palomar) Mawet et al. 2011



K8-M2 companion K=7.8 >8.6 AU (>320 mas)





















#### Statistical analysis









#### Statistical analysis 1. Excess frequency vs spectral type























#### Statistical analysis 1. Excess frequency vs spectral type

























#### Statistical analysis 2. Excess frequency vs cold dust presence







Observatoire

#### Statistical analysis 2. Excess frequency vs cold dust presence



- Spectral type matters for stars with no outer reservoir
- Different mechanism?
- Only 5 A stars without outer reservoir





#### Statistical analysis 3. Excess frequency vs age and fractional age



No significant trend

















Observatoire



LESIA

)bservatoire











#### Statistical analysis 4. Excess frequency vs fractional luminosity





















- Near-IR emission of winds from <1.5 R\* (would not be resolved)
- Mass-loss of A stars expected to be very low.



















# The quest for hot dust continues

- FLUOR is now JOUFLU (see Scott's and Mennesson's talks)
- Ongoing survey in the Southern hemisphere with VLTI/PIONIER
  - Spectral information (H and K bands)
  - ~100 stars observed (Ertel et al., in prep)
  - First detection: β Pic (Defrère et al. 2012):





# The quest for warm dust too



- LBTI is underway:
  - ✓ Will reach the level required to prepare future exoEarth imaging instruments (10 zodis at 10 microns)
  - ✓ First null data obtained in September 2012 (in open-loop)
  - ✓ See next talk!

GeorgiaStateUniversity







# **THANK YOU**





















