

CHARA/NPOI 2013 Science & Technology Review

Preparation of runs/obs.:

CDS

VEGA: people and tools

Since D. Mourard accepted his new position at INSU (Astronomy in France) last June, the VEGA team has a new organisation.

PI: N. Nardetto

Technical aspects D. Mourard with Jean-Michel Clausse Technical support to observations

• people preparing VEGA runs : ~6

• people involved in observations: ~15 (+visitors)

Observatoire

Observations of 2013

2013 :

- Number of programs: **20** (including **8** news programs)
- The VEGA group can support no more than **50** nights per year (+ few technical nights).

- Priorities will be put among these VEGA programs
- New strategy: few objects per night, quick sequence C-T-C

Several programs VEGA+MIRC (β Lyrae, , θ1 Ori C, ε UMa) or VEGA+FLUOR (surface brightness relation of late-type stars for LMC distance of eclipsing binaries) All VEGA programs need CLIMB as a fringe tracker (and for recording in some cases)

 \rightarrow The CHARA array is unique in the world to provide such complementary data !

Observatoire

CHARA/NPOI 2013 Science & Technology Review

Status of publications

http://www-n.oca.eu/vega/en/news/index.htm (VEGA website)

2012

P12: "The relationship between gamma Cassiopeaie's X-ary emission and its circumstellar environment", Smith, Lopes, Motch et al., A&A 540, A53 (2012) (pdf)

P13: "A high angular and spectral resolution view into the hidden companion of eps Aurigae", Mourard, Harmanec, Stencel et al., A&A 544, A91 (2012) (pdf)

P14: "A new interferometric study of four exoplanet host stars: theta Cygni,14 Andromedae, ups Andromedae and 42 Draconis", Ligi, Mourard, Lagrange et al., A&A 545, A5 (2012) (pdf) See Talk by Roxanne Ligi on Wenesday

P15: "The relationship between gam Cassiopeiae's X-ray emission and its circumstellar environment", Stee, Delaa, Monnier et al., A&A 545, A59 (2012) (pdf)

2013

P16: "Spectrally resolved interferometric observations of a cep and physical modeling of fast rotating stars", Delaa, O., Zorec, J., Domiciano de Souza, A. et al., accepted for publication in A&A (2013)

P17: "Enhanced Halpha activity at periastron in the young and massive spectroscopic binary HD 200775", Benisty, Perraut, Mourard et al., in revision for A&A

+ in preparation:

- •10 Aql (Perraut et al.)
- φ Per imaging (Mourard et. al.)
- Metal poor stars (Creevey et al.)
- SB relations for EBs (PhD Challouf et al.)
- CoRoT Target HR7349 (Creevey et al.)
- Eclipsing Binary λ Tau (Nardetto et al.)

Two VEGA niches :

- high spatial frequencies for diameters and fundamental parameters
- high spectral resolution (kinematic)

CHARA/NPOI 2013 Science & Technology Review

The relationship between γ Cassiopeiae's X-ray emission and its circumstellar environment

II. Geometry and kinematics of the disk from MIRC and VEGA instruments on the CHARA Array

Ph. Stee¹, O. Delaa¹, J. D. Monnier³, A. Meilland¹, K. Perraut², D. Mourard¹, X. Che³, G. H. Schaefer⁸, E. Pedretti¹⁴, M. A. Smith⁴, R. Lopes de Oliveira⁵, C. Motch⁶, G. W. Henry⁷, N. D. Richardson⁸, K. S. Bjorkman⁹, R. Bücke¹⁰, E. Pollmann¹¹, J. Zorec¹³, D. R. Gies⁸, T. ten Brummelaar⁸, H. A. McAlister⁸, N. H. Turner⁸, J. Sturmann⁸, L. Sturmann⁸, and S. T. Ridgway¹²

3	Parameters	Gaussia	n model	3	0.000229
VEGA (near Hα)		Visible band	near-IR band	H band	- 0.000184 3
40	θ_{disk} (mas)	0.76 ± 0.05	0.82 ± 0.08	(MIRC)	- A
	$\delta \theta_{\rm disk}$ (mas)		_	§ 1	- 0.000161
	f	1.36 ± 0.08	1.33 ± 0.08		0.000138
- nome	PA (deg)	19 ± 5	12 ± 9		- 0.000115
8 - LORY	F_{disk} (%)	45 ± 9	53 ± 2		- 9.18e-05
	F_{bg} (%)		12 ± 1	e	- 6.880-05
1 - 10m	χ^2_r	3.03	3.96	😓 UD + Gaussian Disk + 📃	- 4.599-05
UD + Gaussian disk				Uniform Background	- 2.290-05
-3-				-3	
3 2 1 0 -1 -2 -3 α (mas, increasing towards East)				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Conclusion : (1) the disk is increasing in size ($V_{exp}=0.2$ km/s), (2) the disk is in contact with the star, (3) in Keplerian rotation and (4) without 1-arm feature (and without any secondary star), (5) the star is in critical rotation

A high angular and spectral resolution view into the hidden companion of ε Aurigae^{*,**,***}

D. Mourard¹, P. Harmanec², R. Stencel³, Ph. Bério¹, O. Chesneau¹, J. M. Clausse¹, R. Ligi¹, N. Nardetto¹, K. Perraut⁴, Ph. Stee¹, I. Tallon-Bosc⁵, H. McAlister^{6,7}, T. ten Brummelaar⁷, S. Ridgway⁸, J. Sturmann⁷, L. Sturmann⁷, N. Turner⁷, C. Farrington⁷, and P. J. Goldfinger⁷

10 Aql (RoAp) : Perraut et al. (in prep)

Determining the position of 10 Aql in the HR diagram to constrain Teff law (biased by spots) and also to better understand the pulsating mechanisms.

$\theta_{\rm UD} \pm \sigma$ (mas)	$\theta_{1D} \pm \sigma$ (mas)	$\theta_{3D} \pm \sigma$ (mas)	
0.337 ± 0.029	0.352 ± 0.029	0.029 0.351 ± 0.029	

$$\chi^2 = 0.77$$

GeorgiaStateUniversity

CHARA

Surface brightness of early (and late-type) stars for the distance of Eclipsing Binaries in LMC (PhD Challouf et al. in prep)

Pietrzynski et al. 2013, Nature, 495, 76 (LMC distance at 2%)

Technical run to test the OCAM camera (Berio et al.) ...at the focus of VEGA/CHARA.

- 4 half-nights in Nov. 2012 (2 nights with good conditions)
- Setting and observations made by S.Lagarde, P.Feautrier and P.Balard.
- 10 stars observed:
 - with magnitude from $m_V=0$ to $m_V=5.5$
 - using 2T (S1S2) and 3T (E1E2W2)

artefacts

- in medium resolution (R=5000) around H $\alpha\,$ and 800nm
- exposure times tested : 1, 2, 5, 10, 20 and 40ms

Conclusion : fringes obtained in each configuration (in photon counting mode)

Instrumental visibility vs. Exposure Time

)bservatoire

Conclusions concerning the OCAM camera

X First successful test of OCAM camera in optical interferometry

- ✓ Fringes detected in 3T up to 5.5 mag (with r_0 ~5cm and a gain lower than 1000) even if:
- ✓ The VEGA mode is not the best for this kind of camera
- ✓ Number of pixels inadequate to image all the speckles (limitation of spectral range)
- \checkmark Correction of detector's artefacts to be done

X Next steps

- ✓ Closure phase and differential visibility and phases.
- ✓ New campaign : characterization of the OPD *Jitter*

X Toward a new instrument ?

- ✓ A prototype is developed at Lagrange Laboratory (with fiber optics)
- \checkmark Toward more sensitivity and/or more precision

✓ The Sciences cases are promising using future AO of CHARA: please visit the VEGAS website: http://www-n.oca.eu/vega/en/vegas/index.htm

