Astrophotonic Quantum Astronomy...

Prof Peter Tuthill Sydney Institute for Astronomy

The Remarkable Rebirth of Masking Interferometry

Keck / NIRC2

Anthony Cheetham

VLT / CONICA

9 Hole pupil mask

Image Plane (linear/log)

Fourier Plane

Asymmetric structures in Transition Disks

Huelamo et al. A&A 2011 2013 (+Cheetham)...

Kraus & Irelad ApJ 2011

Masking: present status

- Mostly L band (some K band detections)
- Now more than half dozen detections of asymmetry
- > What are we seeing?
- > Search for evidence of orbital motion.
- NACO is going away (probably)
- >NIRC2 going strong
- > New opportunities at GPI, LBT
- Also big algorithmic gains

Image Credit: ESO/L. Calçada

JAM: JWST Aperture Mask

SPACE TELESCOPE MIRROR COMPARISON

FICSM: Fizeau Interferometric Cophasing of Segmented Mirrors

- Initial state mirror has tilt 0.5 arcsec and phase errors of 150 microns
- Algoithm requires one broadband and one narrowband image. Repeat once (two cycles).
- Delivers 3.7mas tilt and 0.75nm in a single application of the algorithm (does not require convergence).
- Now adopted as primary backup strategy for phasing JWST mirrors in the event of a failure of NIRCAM.
- Can be extended to any segmented mirror
- > Does not require a mask
- > Working on seeing limited case

Cheetham, Tuthill et al. Applied Optics 2013

Kernel Phase detection of Brown Dwarf binaries

- Reanalysis of archival Hubble Space Telescope data from a previous survey looking for brown dwarf binaries (Reid et al., 2006)
- Use Kernel Phase a generalization of Closure Phase which applies to redundant pupils (Martinache 2010)
- Kernel Phase works at high Strehl when wavefronts can be approximated as a linear sum of phase errors

Ben Pope

(2006), 2M 0149-4954

Fourier phases

The Incredible Precision of Kernel Phase I

- > Data vs. model for best parameter fit for the known binary from earlier
- > With error bars!
- ase > A good fit lies on the Kernel Ph y = x line – this does over its entire range
- > Parameters are an order of magnitude more precise than visual estimates

Comparison with Previous Survey

Target – 2MASS	Old		New	
2252-1730	Н	J	Н	J
Separation	140		127.8 ± 2.3	125.8 ± 1.5
θ	341.5		353.1 <u>+</u> 0.5	353.7 ± 0.4
Contrast	4.2	2.47	3.5 ± 0.1	2.47 ± 0.05
0147-4954				
Separation	190		139.9 <u>+</u> 0.3	139.7 ± 0.2
θ	67.6		72.7 <u>+</u> 0.1	72.5 <u>+</u> 0.1
Contrast	1.58	3.5	2.07 ± 0.01	2.36 ± 0.01

New Binaries

- Here is an L dwarf which is not obviously a binary
- Reid et al. (2006) looked hard and noted 'PSF abnormality' in some targets
- Is there a slight gradient in the Fourier phases?
- Can kernel phases detect anything in such a marginal case?

- THE UNIVERSITY OF SYDNEY
- Data vs. model for a new L dwarf binary, 2M 2028+0052
- We have five strong candidates of this form
 - mostly with no PSF abnormality noted
- All close binaries at low contrast
 - Follow up to confirm and get masses

Kernel Phase Outcomes

- Two orders of magnitude more precise astrometry on eight known binaries for follow-up
- > Discovered five new brown dwarf binaries
- Higher Binary Fraction lends further weight against embryo ejection models, favouring gravo-turbulent collapse
- Uncovered a population of a half dozen high contrast (>10) potential planetary-mass candidates
- Illustrated the power of kernel phase for space and ground based high contrast detection
- Required the development of sophisticated data analysis (Nested Sampling Bayesian Methods).

Illustration by Jon Lomberg, University of Toronto. Published in *National Geographic*, September 13, 2011.

Pope, Martinache and Tuthill 2013 ApJ

A masking go-faster stripe: Polarimetric Interferometry for enhanced precision

CONICA camera with Wollaston Prism

Normal Imaging

Polarised light

Barnaby Norris

Optical Interferometric Polarimetry: W Hydrae

THE UNIVERSITY OF SYDNEY

Grain Size: 10 nm metrology precision at 100 PC !

15

Dust grain size and mass tightly constrained from multi-lambda scattering

VAMPIRES: Visible Aperture Masking Polarimetric Interferometer for Resolving Exoplanetary Signatures

The Dragonfly Instrument

2-D to 1-D Pupil Reformatting

First DRAGONFLY on-sky data

Cassini's Ringside view of Mira

Paul Stewart

- VIMS instrument
 - Visible & Infrared Mapping Spectrograph
 - Designed for stellar occultations
 - Continuous spectra 1-5 microns
 - Space: no scintillation noise!

Cassini-Saturn System Geometry

- Inner Encke Gap edge is sharp
- Highly elliptical 18 day orbit
- ~4 times Earth-Moon distance
- Apogee, most distant and slowest point, best for occultations

Model Fitting Examples

First results on Mira

 Resolved molecular atmosphere of Mira with stellar occultations from Cassini over 1-5 micron region

 Able to constrain state of the art models in this critical wavelength range in the windbase region around the star

CODEX Mira Atmosphere model