

NPOI Observations of 85 Stars and the Limb-Darkening Laws That Love Them

Ellyn Baines Naval Research Laboratory ellyn.baines@nrl.navy.mil

Tom Armstrong¹, Henrique Schmitt¹, Jim Benson², Bob Zavala², Don Hutter², Gerard van Belle³ ¹NRL, ²USNO, ³Lowell Observatory

NPOI Observations of 85 Stars and the Limb-Darkening Laws That DON'T Love Them

Ellyn Baines Naval Research Laboratory ellyn.baines@nrl.navy.mil

Tom Armstrong¹, Henrique Schmitt¹, Jim Benson², Bob Zavala², Don Hutter², Gerard van Belle³ ¹NRL, ²USNO, ³Lowell Observatory

The Sample

- Started with 21 targets: – Large stars (~few mas) observed in early 2013
- Added some of my unpublished targets – Mostly K giants, some exoplanet hosts
- Had a bit of a chat with Jim Benson
 - Added about 60 more from archival data ullet
- Total: 85 stars

Zero Crossers

- Of 85 stars, 55 have data at the first null
- Of those 55, a handful have very clean data at null and beyond
- Not using zero crossing as diameter determination
 → Jorgensen and Armstrong working on that
- Our goal: test limb darkening laws

Stellar Models

- Plane parallel:
 - Example: Kurucz stellar models
 - Many don't like these
- Spherically symmetric:
 - Example: Neilson & Lester (2013)
 - May be more realistic interpretation of stellar interior
- We shall see.

Case Study: Pollux

Kurucz Plane Parallel Model

Neilson & Lester Spherical Model

Neilson & Lester Spherical Model

Neilson & Lester Spherical Model

The Plan

- Measured uniform disk diameters ullet
- Continue to fit observed visibilities to various stellar models to derive limb darkened diameter
- See which models work best for the most stars
- Derive other perks: T_{eff}, R, F_{BOL}, L, etc.
- Publish

Benefits

- As longer baselines are used, finding unresolved calibrators becomes ridiculously difficult.
- Knowing which limb darkening law(s) work best will help better characterize calibrator stars in general.
- Also benefits stars with transiting planets: \rightarrow The better you know the brightness profile, the more accurately you can measure transit events.

