

CHARA Lab-AO

Dr Michael Ireland – Australian National University With lots of help from: Theo, Judit, Laszlo and the whole CHARA-AO team

Motivation

- Ideally, an AO system is operated in feed-back mode, with the deformable-mirror (DM) before the wavefront sensor (WFS).
 For CHARA, this is expensive and so-far unfunded.
- It is possible to operate as a "feed-forward" or open-loop system. The problem with this is that there is no knowledge of if the wavefront is actually flat.
- A hybrid system is possible, where a slow "truth" wavefront sensor operates in a slow feedback loop, to track open-loop errors (like LGSAO tracking focus) or to at least record them for later analysis.

LabAO Purposes at CHARA

- 1. Enable the possibility of open loop AO using the on-telescope WFS.
- 2. Correct static aberrations, including the (rotating) aberration from the telescope.
- 3. Track the pupil, enabling M10 alignment using starlight.
- 4. Correct lab seeing and tilt (a minor need).

CHARA 2014 Science & Technology Review

(C) Observatoire de la COTE d'AZUR Max-Planck-Institut für Radioastronomie

Adjustments

- Each of the large reflective optics has tilt adjustments expect to only tilt the DM in week to week alignment.
- The camera has a focus adjustment.
- Pupil conjugation and WFS scale are set by measurements of the optical components when mounted in the lens tube.
- The pupil scale is set by translating the lens tube in its mount.
- WFS pupil alignment is set by tilting the beamsplitter.

5mm lenses glued in mounts

WFS Parameters

- The wavefront sensor operates in the collimated 19mm beam.
- A pupil of 0.95mm diameter is imaged onto an array of microlenses with 0.15mm pitch and 6.7mm focal-length.
- This gives a +/- 2.3 arcsec field of view only per microlens.
- Pixel scale is nominally 0.30 arcsec/pix, with 15 pixels nominally between neighboring images. The scale appears to be out by a factor of 0.7 from this (11 pixels and 0.43 arcsec/pix – a lens in the wrong place by 1.2mm).

(in retrospect, this is probably not ideal. Sticking with Thorlabs parts, we can increase this FOV to +/-3 arcsec.)

Detector

- The detector is the DCC1545M CMOS camera from Thorlabs (actually the monochrome UI-1540LE from uEye).
- Has 9 electrons readout noise, about 50% QE and can read at 500Hz in an appropriate sub-array (price: \$345).
- USB2

As seen by the server...

	,		10		1	1			
		0				1			
	•			0	٥		O O ∑ mireland@labao:~/control/cliserv/labao/server		
	0			6			CHARA Tm: 13:58:12 Tilt: 0.00 0.00 EDAC40 : Open Focus: 0.00		
-		Q			0		Frms/Sec: Cam Off <u>Astig:</u> 0.00 0.00 Proc/Sec: Cam Off Disp/Sec: Disp Off X/dX : 540/ 160 Y/dY : 460/ 128		
		Ū.	a	D					
	*		0			-	Min/Max : 0/ 0		
							ATBRUESZ 1.0 F1 Utilities Menu F2 Control background F2 Control background Current menu : MAIN F3 Control sockets Previous menu : None F4 Control EDAC40 Menu Depth : 0 F5 Control Zernike Modes F6 Control USB Camera F6 Control FSM Camera Help F7 Control FSM Camera <backspace> Previous menu F8 Quit system <^> MAIN menu F8 Quit system</backspace>		
							Reconstructor successfully loaded!		

DM Parameters

- The DM is a 37 actuator OKO DM, with a 10.5mm diameter from actuator to actuator.
- This conjugates 150m upstream of the BRT which only matches the telescope pupil for W2 POP1. A cost effective DM of appropriate size for typical conjugation was not available.

Parameter	Value					
Aperture shape Mirror coating	approximately circular					
Aperture dimensions	15mm diameter					
Number of electrodes	37 (19) (see Fig. 3)					
Initial RMS deviation from plane	less than 0.45 μ m					
Main initial aberration	1.5 fringes at 630nm					
Maximum deflection of the mirror center	9.0 μm					

Table 1: Technical parameters of the mirror.

Operating Modes

- 1. Flat wavefront measurement (requires lab source)
- 2. Reconstructor computation (requires beacon)
- 3. Closed-loop AO
- 4. Fast starlight passive measurement (telescope AO calibration).
- 5. Slow starlight "truth" wavefront sensor and pupil tracker.
- 6. Beacon tracker (tilt and pupil).

Open loop with artificial "Seeing"

Cost de la COTE d'AZUR Max-Planck-Institut für Radioastronomie

Close loop with artificial "Seeing"

Cost d'AZUR Max-Planck-Institut für Radioastronomie

 $\theta \, Aur \\ (system misaligned : data for flux only)$

Ľ)

(a)

Observatoire de la COTE d'AZUR Max-Planck-Institut für Radioastronomie

Image of (resolved) fiber source

- With the current 50 micron core fiber system mounted on the rail, I can only say that the image is less than 1 arcsec and consistent with the fiber core size (measured with PAVO).
- More testing needed with S2 beacon when installed.

Where to Next?

- The real dichroics should arrive today (poor timing!) The procedure for their alignment can be carried out by staff on the mountain.
- With only 1 dichroic in the beam, the 5mm of CaF2 is the equivalent of 5m of air. This is negligible for IR combiners (PAVO tracks dispersion anyway).

Fast Passive WFS Calibration...

- With N_1 lab WFS measurements and N_t telescope WFS measurement, we can create a $(N_1 \times N_t)$ correlation matrix C.
- Multiplication by this matrix translates the lab WFS measurements to the telescope WFS, enabling a new reconstructor to be made from the interaction matrix, projected to the telescope WFS coordinate system (i.e. a matrix multiplication $T_t = C \cdot T_1$, with T the inTeraction matrix.
- Works better with finer lab WFS sampling than telescope WFS sampling (as we have 28 lenslets).

