Overview and current state of the VEGA scientific programmes

What do we do with VEGA?

« Large Band » interferometry

Measure angular diameters down to 0.2 mas (highest spatial resolution)

But also study geometry like binary, flatening...

But limited imaging due to lack of closure phase and 2nd lobe V² measurements

Spectrally-resolved interferometry

Study variation of visibility and phase through emission or absorption lines

Localize chemical elements Study kinematics

Spectro-imaging (thanks to differential phase)

I. Measuring angular diameters

Why?

Calibration of various distance relations

Exoplanets host-stars (calibration)

Physical processes like convection, rotation, magnetic fields, non-radial pulsations, etc. are based on **fundamental parameters**

 $\succ M_{\star}$, R_{\star} , L_{\star} T_{eff} , g_{eff} , ρ , abundances

From the measurement of these fundamental parameters and theoretical evolutionary tracks, one can put into test **models**

- Stellar interiors, evolutionary stages
- Magnetic field topology, pulsation excitation
- Planetary systems

• ro Ap stars (Perraut)

- 2 Papers published (Perraut+ 2011, Perraut+ 2013)
- New observations for 2014

• **COROT Targets** (Creevey & Bigot)

- 1 paper published (Bigot+ 2011)
- New observations for 2014

• Subgiant stars (Mourard & Farrington)

- 1 Paper to be submitted in 2014
- Red giant stars (Creevey & Bigot)
 - 1 paper in preparation
- Metal-Poor (Bigot & Creevey)
 - 1 Paper to be submitted in 2014

I. Measuring angular diameters 2. Exoplanets host-stars

Planet Radius and Mass given as a ratio of Host-star R_{\star} and M_{\star}

Back to fundamental params. of star

First paper on 4 host-stars Ligi, Mourard et al. (2012)

Ligi PhD thesis defended in 2013

Observation are going-on 2nd paper in preparation

I. Measuring angular diameters 3. Calibration of distance relations

I. Measuring angular diameters 3. Calibration of distance relations

✓ angular diameters of 8 early-type stars in the visible with a \approx 1,5% accuracy

✓ S↓v relation with 0,11 mag of accuracy (5% on predicted angular

I Measuring angular diameters 4. Beyond diameters : binaries, environment, flattening...

Nardetto+ to be submitted in 2014

II spectro-interferometry 1. Overview of published papers

11 papers (total VEGA papers = 20 - 3 technical ones)

9 papers on circumstellar environment

Disk of Be stars (Delaa+ 2011, Meilland+ 2011, Smith+ 2012, Stee+2012) Disk and/or Wind of YSO (Peraut+ 2010, Benisty+ 2013) Interacting binary (Bonneau+ 2011) Wind of supergiants (Chesneau+ 2010) Peculiar stars (Mourard+ 2012)

2 papers on stellar surface or atmosphere

Chromosphere of K giants (Bério+ 2011) Rotation of α Cep (Delaa 2013+)

5 papers with only geometry and/or extension (H α , H β , CaII triplet, SiII, HeI)

6 papers with kinematics constraints (mainly in H α)

II spectro-interferometry

2. Access to kinematics thanks to differential vis. and phase

The Be star Omi Aqr

II spectro-interferometry 2. Ongoing programmes

YSO

Other

2013

- 51 Oph (YSO?)
- θ1 Ori C (YSO binary)
- SS Lep (symbiotic YSO)
- β Lyr imaging (binary Be star)
- Be/Bn stars
- Stellar Spots
- Yellow Hyper Giants
- ε Aur
- P Cyg
- Nova Del

2014

- YSO CE (disk/Wind)
- Late YSO (51 Oph and HD141569)
- SS Lep (symbiotic YSO)
 - Fast Rotation of Bn stars
- **Be Stars** Edge on Be stars
 - Magnetic Be stars
 - YHG (evolution and eruption)
 - Chromosphere of Red Giants
 - ε Aur
 - P Cyg

II spectro-interferometry 4. VEGA imaging capabilities

Integrated image in the whole H α line MIRA software (Thiébaut) + self-calib algorithm (Millour)

The circumstellar disk of The edge Be star φ Per Mourard, Monnier et al. 2014, in preparation

VEGA 4T 8 Observations (= 48 uv pts) in the Hα line R≈1600 (180 km/s) + MIRC 6T

II spectro-interferometry 4. VEGA imaging capabilities

Integrated image in the whole $H\alpha$ line MIRA software (Thiébaut) + self-calib algorithm (Millour)

Artifacts or not?

Dbservatoire Max-Planck-Institut

Some random model

at high inclination

using the BEDISK code

(A. Sigut & C. Jones)

II spectro-interferometry

4. VEGA spectro-imaging capabilities

Merci CHARA et à bientôt!

für Radioastronomie