

Status report on VEGA and moving towards FRIEND

Denis Mourard, Nicolas Nardetto, Philippe Berio, Karine Perraut, Isabelle Tallon-Bosc, Philippe Stee, Olivier Chesneau, Jean Michel Clausse, Alain Spang, and

...Anthony Meilland

Breaking news!

First image with VEGA and First hyperspectral image with CHARA

The circumstellar disk of the edge-on Be star φ Per

(More about this in Wednesday talk)

CHARA 2014 Science & Technology Review 2013 published papers

GeorgiaStateUniversity

10 Aql

6580

6580

6580

bservatoire

LESIA

+ 89 Herculis with other instruments + 48 And (SFP)

2013 observations

- 9 runs : 2 VEGA+MIRC (ϵ Uma and β Lyr), 2 VEGA+FLUOR, 6 in remote
- 5 Run managers (Isabelle, Karine, Nicolas, Denis, Philippe) and 13 observers
- 59 nights: 17 bad conditions, 7 poor condition and 35 with good conditions (60%)
- 312 measurements: (~7.5/night)

- V11 : β Lyr (Imaging VEGA + MIRC)
- V60 : Surface-Brightness relations (late-type)
- V38 : Surface-Brightness relations (early-type)
- V01 : Exoplanet host stars
- V52 : δ Cep (Main backup target)

Future publications in 2014

- Surface-brightness of early-type star (Challouf, submitted)
- Spatio-spectral imaging of φ Per (Mourard, in preparation)
- Exo planet host stars (Ligi, in preparation)
- Metal poor stars (Creevey, almost ready to submit)
- Symbiotic star SS Lep (Blind, in preparation)
- Nova (Chesneau, in preparation)
- Asteroseismic target (Bigot, in preparation)
- δ Cep (Nardetto, in preparation)
- The eclipsing binary λ Tau (Nardetto, in preparation)

2014 programs

- 17 proposals (4 new) for almost 70 nights requested. 48 nights allocated to VEGA.
- Priority given by the CHARA-TAC analysis
- 6 runs over the year. Importance of April and December despite poorest conditions...
- Quite easy to adapt the run's schedule with scope's availability. Good to know in advance!

	PI	Title	nights alloc by the cha	cated ra-tac
V60	NardettoA	Improving the calibration of the surface brightness – color relation for late type stars	4,60	
V62 (new)	Meilland	Critical rotation and mass-loss: new insights from the study of edge-on Be stars.	3,30	
V55	Valls-Gabaud	The distance to the Pleiades using the double-lined detached eclipsing binary HD23642	2,20	
V16	PerrautA	Fundamental parameters of the magnetic rapidly oscillating Ap stars	2,50	
V12	PerrautB	Accrétion/Ejection in intermediate mass young stars	2,00	
V64 (new)	SteeB	Global Fast Rotation and Surface Differential Rotation of Bn stars	1,60	
V50	CreeveyA	The radius of the metal-poor post T-O star: HD140283	0,90	60% good
V52	NardettoB	Breaking the frontier to the cosmic distance scale using Cepheids.	6,80	nights
V43	CreeveyB	Determining masses of asteroseismic targets	1,80	
V54	Jamialahmadi	The late youth of fast rotating stars: connecting the environment and the photosphere of 510ph and HD141569	2,30	
V27	Mourard	Post eclipse high spectral and spatial resolution follow-up of ε Aurigae	0,60	
V48	PerrautC	Observing the accretion disk and wind in the symbiotic star SS Leporis.	0,80	75% good
<u>V38</u>	Challouf	Calibration of the surface-brightness relation of BA early type stars: Toward a very accurate distance determination of LMC eclipsing binaries	0,50	nights
V57	Chesneau	Time monitoring of the angular diameter of two yellow hypergiants: long-term follow-up and short-term activity (eruptions)	0,50	
V61 (new)	Bigot	Fundamental parameters and chromospheric extents of active magnetic Red Giants	5,70	
V63 (new)	SteeA	Investigation of the magnetic effects on the disk around the classical Be star ω Ori	1,60	
V01	Ligi	Characterization of exoplanet host stars	2,20	

Priority list (based on chara-tac scores)

Hidden side of VEGA

- New generation photon counting detector commissioned in June 2013.
 Gain of 1 mag Texp=10ms Global efficiency improved
- Improved real-time processing for cophasing and quality check. A huge improvement that greatly facilitates all the night operations
- Upgrade of computers (CentOS) New data-reduction computer in Nice
- Contribution to the definition JMMC OIDataBase OIDB is now feeded by the VEGA data
- Tests of new method for diameter estimation (*Differential processing + model fitting*)

Beyond VEGA ... and towards FRIEND

The intrinsic VEGA limitations are now well analyzed and understood:

Limitations: No closure phase Difficulties at low Visibilities Limitation of the measurement's accuracy

<u>Reasons</u>: Multimode regime Photon counting detector : Saturation effect Photon centroiding hole

<u>Context</u>: Test of a promising new analogic detector in the visible (OCAM²) Future Adaptive Optics on CHARA

First tests OCAM² on VEGA (Nov 2012)

Differential visibility and phase (y Cas)

Bispectrum: 3T (g Cas) => Closure phase

für Radioastronomie

What is FRIEND?

A prototype for a future visible instrument

- 3 telescopes combiner
- in multi-axial mode
- Spectrally-dispersed fringes with R=1500
- Spatial filtering using optical fibers
- Use of a Vgroove
- Simultaneous photometry in dedicated channels
- Low noise (<1ev) visible detector OCAM2

FRIEND in the Nice optical Lab

-LESIA

FRIEND in the Nice optical Lab

FRIEND on CHARA (Dec 2014)

FRIEND on CHARA (Dec 2014)

FRIEND (expected sensibility)

 $N_{ph} = N_{tel} \cdot T_{FRIEND} \cdot T_{CHARA} \cdot T_{PC} \cdot T_{Coupling} \cdot QE \cdot S_{tel} \cdot \Delta\lambda \cdot DIT \cdot 10^{-0.4m} \cdot \phi_0 \cdot \frac{\lambda}{hc}$

$$SNR_{V^{2}} = \sqrt{n_{c}} \sqrt{n_{im}} \frac{N_{ph} DSP_{hf}}{\sqrt{N_{ph}^{4} DSP_{hf}^{2} + 2N_{ph}^{3} DSP_{hf} + N_{ph}^{2} + n_{px/channel}^{2} N_{clo}^{2}}$$

$DSP_{hf} =$	$\frac{1}{n_{tel}^2} V_{inst}^2 V_{t\mathrm{arg}e}^2$	et
--------------	---	----

für Radioastronomie

 $T_{CHARA}=0.16 \\ T_{optic}=0.45 \\ T_{phot}=0.7 \\ T_{polar}=0.5 \\ T_{OA}=0.8 \\ T_{Coupling}=0.2 \\ QE=0.9 \\ T_{PC}=0.78 \\ N_{CIC}=0.0023 ph/px/im \\ V_{inst}=0.8 \\ n_{tel}=3 \\ R=800$

FRIEND and beyond...

Nov 2012

Tests of an OCAM² camera on VEGA

-2013-2014 -Summer 2014 -18-20 Dec 2014 -2015

2016

Development of a testbed in Nice Acquisition and implementation of the OCAM² First test of the prototype on the VEGA table Performances and science demonstration

Design of 6T combiner with spectral-dispersion(s) and definition of the sciences cases (We are open to collaborations)

2017

GeorgiaStatel

6T On sky?

Clone as a visible visitor instrument on VLTI?

Thank you CHARA!

