

A complete CHARActerization of the HD189733 and the HD209458 systems

Tabetha Boyajian

Kaspar von Braun, Gregory A. Feiden, Daniel Huber, Sarbani Basu, Pierre Demarque, Debra A. Fischer, Gail Schaefer, Andrew W. Mann, Timothy R. White, Vicente Maestro, John Brewer, C. Brooke Lamell, Federico Spada, Mercedes Lopez-Morales, Michael Ireland, Chris Farrington, Gerard T. van Belle, Stephen R. Kane, Jeremy Jones, Theo A. ten Brummelaar, David R. Ciardi, Harold A. McAlister, Stephen Ridgway, P. J. Goldfinger, Nils H. Turner, Laszlo Sturmann

CHARA 2015 Towards Adaptive Optics at CHARA

Full article: Boyajian et al. 2015, MNRAS, 447, 846

Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

Tabetha Boyajian^{1*}, Kaspar von Braun^{2,3,4}, Gregory A. Feiden⁵, Daniel Huber^{6,7}, Sarbani Basu¹, Pierre Demarque¹, Debra A. Fischer¹, Gail Schaefer⁸, Andrew W. Mann^{9,10}, Timothy R. White¹¹, Vicente Maestro¹², John Brewer¹, C. Brooke Lamell¹, Federico Spada¹³, Mercedes López-Morales¹⁴, Michael Ireland¹⁵, Chris Farrington⁸, Gerard T. van Belle⁴, Stephen R. Kane¹⁶, Jeremy Jones¹⁷, Theo A. ten Brummelaar⁸, David R. Ciardi¹⁸, Harold A. McAlister¹⁷, Stephen Ridgway¹⁹, P. J. Goldfinger⁸, Nils H. Turner⁸, and Laszlo Sturmann⁸

¹ Yale University, New Haven, CT, USA ²Max-Planck-Institute for Astronomy (MPIA), Königstuhl 17, 69117 Heidelberg, Germany ³Mirasol Institute, Munich, Germany ⁴Lowell Observatory, Flagstaff, USA ⁵Department of Physics & Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden 6NASA Ames Research Center, Moffett Field, CA 94035, USA ⁷SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA ⁸The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023, USA ⁹Harlan J. Smith Fellow ¹⁰Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA ¹¹Institut f
ür Astrophysik, Georg-August-Universit
ät G
öttingen, Friedrich-Hund-Platz 1, 37077 G
öttingen, Germany 12 Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia ¹³Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482, Potsdam, Germany ¹⁴Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 03128, USA ¹⁵Research School of Astronomy & Astrophysics, Australian National University, Canberra ACT 2611, Australia ¹⁶Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA ¹⁷Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA ¹⁸NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125, USA 19 NOAO, Tucson, AZ, USA Observatoire bservatoire **GeorgiaStateUnive**

The hot (super-sized) Jupiters HD189733b and HD209458b

• HD 189733 (K2 V)

• HD 209458 (G0 V)

Using the **planet** to learn about the star (special cases)

• The **planet's** RVs are observed for the transiting systems HD 189733 and HD 209458 → measured masses

Model independent properties for both star and planet

	HD 189733		HD 209458	
Property	Value	Reference	Value	Reference
$\theta_{\rm LD}$ (mas)	0.3848 ± 0.0055	this work (§ 2.1)	0.2254 ± 0.0072	this work (§ 2.1)
$F_{\rm Bol} (10^{-8} {\rm ~erg~s^{-1}~cm^{-2}})$	2.785 ± 0.058	this work (§ 2.3)	2.331 ± 0.051	this work (§ 2.3)
<i>L</i> _∗ (L _☉)	0.328 ± 0.011	this work (§ 3.1)	1.788 ± 0.147	this work (§ 3.1)
$R_*~(R_\odot)$	0.805 ± 0.016	this work (§ 3.1)	1.203 ± 0.061	this work (§ 3.1)
$T_{\rm eff}$ (K)	4875 ± 43	this work (§ 3.1)	6092 ± 103	this work (§ 3.1)
[Fe/H] (dex)	-0.03 ± 0.08	Torres et al. (2008)	0.00 ± 0.05	Torres et al. (2008)
$R_{\rm p}/R_{*}$	0.155313 ± 0.000188	Agol et al. (2010)	0.12403 ± 0.00043	Beaulieu et al. (2010)
$R_{\rm p}$ (R _{Jup})	1.216 ± 0.024	this work (§ 3.2)	1.451 ± 0.074	this work (§ 3.2)
$M_*~(\mathrm{M}_{\odot})$	0.846 ± 0.049	de Kok et al. (2013)	1.00 ± 0.22	Snellen et al. (2010)
$M_{\rm p} ({ m M_{Jup}})$	1.162 ± 0.058	de Kok et al. (2013)	0.64 ± 0.09	Snellen et al. (2010)
$\log g_{ m p}$	3.29 ± 0.02	this work (§ 3.2)	2.88 ± 0.07	this work (§ 3.2)
$\log g_*$	4.56 ± 0.03	this work (§ 3.2)	4.28 ± 0.10	this work (§ 3.2)
$ ho_{ m p}~(ho_{ m Jup})$	0.605 ± 0.029	this work (§ 3.2)	0.196 ± 0.033	this work (§ 3.2)
$ ho_*(ho_\odot)$	1.62 ± 0.11	this work (§ 3.2)	0.58 ± 0.14	this work (§ 3.2)

Observatoire

Stellar $T_{\rm eff}$ and radius: HD189733

WHY?

• HD 189733 mass and radius are in agreement, but not the Teff and radius \rightarrow the luminosity is off by 35%!

CHARA 2015 Towar

CHARAC

• AGE

- COMPOSITION
- Metallicity
- α-element enhancement
- Helium abundance
- Solar mixture
- CONVECTION
- Magneto-convection
- Star spots
- Reduced mixing length

Georgia State University

CHARAC

CHARA 2015 Towards Adaptive Optics at CHARA

Example:

[Fe/H] = - 0.03 +/- 0.08 (Bouchy et al. 2005; Torres et al. 2008)

 \rightarrow Models require [M/H] = + 0.2 (@ 10 Gyr)

• AGE

- COMPOSITION
- Metallicity
- $-\alpha$ -element enhancement
- Helium abundance
- Solar mixture
- CONVECTION
- Magneto-convection
- Star spots
- Reduced mixing length

< Bf > ~ 40 – 100 G

(Moutou et al. 2007; Pillitteri et al. 2014)

• AGE

- COMPOSITION
- Metallicity
- α-element enhancement
- Helium abundance
- Solar mixture
- CONVECTION
- Magneto-convection
- Star spots
- Reduced mixing length

→ Models require ~1.5kG

DMEstar: Feiden & Chaboyer (2012, 2013), as described in Muirhead et al. (2014) and Malo et al. (2014)

• AGE

- COMPOSITION
- Metallicity
- α-element enhancement
- Helium abundance
- Solar mixture
- CONVECTION
- Magneto-convection
- Star spots
- Reduced mixing length

Fares et al. (2010); Llama et al. (2013)

Thank you.

