

Weather and Seeing Stats, Control System Upgrades

Nils Turner

18 March 2015 / CHARA Winter Meeting, Atlanta

CHARA 2015 Towards Adaptive Optics at CHARA

Weather Station Uptime

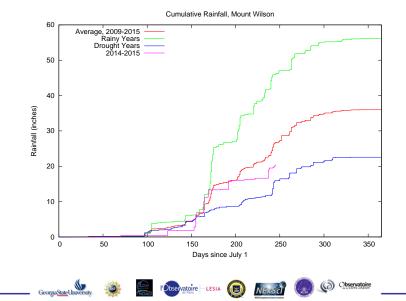
	Cum.	2011	2012	2013	2014
E1	95.4	98.9	97.3	99.9	99.7
E2	89.8	94.7	97.7	93.0	62.2
S1	94.0	96.8	99.0	99.7	79.8
S2	93.6	98.2	92.8	91.7	98.5
W1	95.8	97.1	98.8	93.3	97.9
W2	94.8	97.3	98.8	92.3	99.6
L1	67.0	47.0	30.5	12.9	99.7

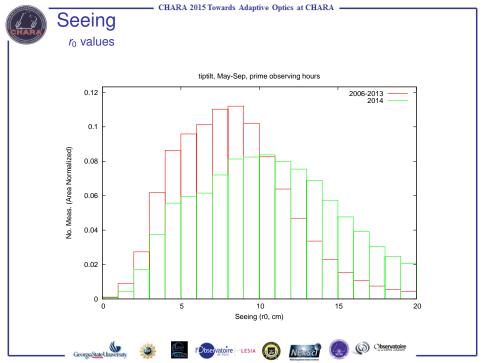
Table: Weather station uptimes as a percentage of time.

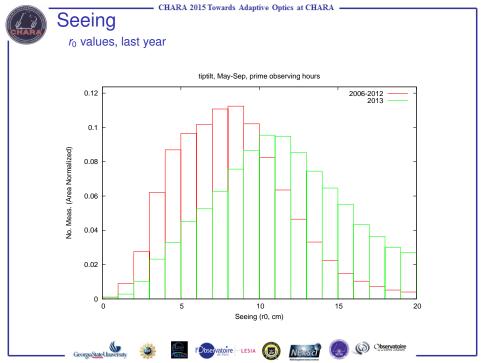
	2009	2010	2011	2012	2013	2014
Measurable Wind	19.2	23.2	30.4	35.6	27.5	11.4
High Wind [†]	0.2	0.7	0.5	0.3	0.3	0.2
High Humidity [¢]	16.5	21.6	18.2	15.6	13.5	16.0

Table: Table entries are percentages of time. Values quoted are the largest of the six bunker weather stations. \dagger High wind is defined as being above 20 kph. \ddagger High Humidity is defined as being above 90%.

Cross-year Vital Stats







Rainfall

```
data courtesy of L. Webster
```


Hardware

- New computers at each telescope actually mounted ON the telescope
 - "shoe-box" style computer (industrial node wall-mount chassis)
 - 5-position backplane and PICMG 1.3 single-board computer
 - Core i3 dual-core CPU, 2.8-ish GHz
 - Eurosys CameraLink card

Hardware

- New computers at each telescope actually mounted ON the telescope
 - "shoe-box" style computer (industrial node wall-mount chassis)
 - 5-position backplane and PICMG 1.3 single-board computer
 - Core i3 dual-core CPU, 2.8-ish GHz
 - Eurosys CameraLink card
- New computer at the western OPLE computer area rack
 - Installed to control all 6 LabAO deformable mirrors
 - Dual Xeon quad-core CPUs, 2.4 GHz, 24 GB memory

Software - Current Status

CentOS 5 with 2.6.18 kernel

- Released April 2007
- Full support ended March 2014
- Bug fixes end March 2017
- Overlayed with 2.6.33RT kernel
 - New Mexico Tech/FSM Labs (Yodaiken) model
 - Intricate patches inflexible updating
 - Not in active development

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - ▶ 2.6.24

Software - Update Path

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25

() Observatoire

Software - Update Path

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update
 - 2.6.30

Software - Update Path

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update
 - 2.6.30 : IRQ threads

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update
 - 2.6.30 : IRQ threads
 - 2.6.33

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update
 - 2.6.30 : IRQ threads
 - 2.6.33 : Raw spinlock annotation

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update
 - 2.6.30 : IRQ threads
 - 2.6.33 : Raw spinlock annotation
 - 2.6.39

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update
 - 2.6.30 : IRQ threads
 - 2.6.33 : Raw spinlock annotation
 - 2.6.39 :
 - Forced IRQ threads
 - R/W semaphore cleanup

Software - Update Path

- CentOS 7 with 3.10 kernel
- Much of the "RT"-esque functionality mainlined to the x86_64 kernel since 2.6.18
 - 2.6.24 : High-resolution timer
 - 2.6.25 : Preemptive read-copy update
 - 2.6.30 : IRQ threads
 - 2.6.33 : Raw spinlock annotation
 - 2.6.39 :
 - Forced IRQ threads
 - R/W semaphore cleanup
- Should full RT be necessary, "CONFIG_PREEMPT_RT" available as a patch to a wider variety of kernels

http://www.kernel.org/pub/linux/kernel/projects/rt/

Software - git

- Transitioning from cvs to git
- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption

Software - git

- Transitioning from cvs to git
- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption
 - Changesets are "per file" in cvs while they are "whole project" under git – easier to revert, but no partial checkouts

Software - git

- Transitioning from cvs to git
- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption
 - Changesets are "per file" in cvs while they are "whole project" under git – easier to revert, but no partial checkouts
 - More logical tagging

Software - git

- Transitioning from cvs to git
- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption
 - Changesets are "per file" in cvs while they are "whole project" under git – easier to revert, but no partial checkouts
 - More logical tagging
 - Easier branching

Software - git

- Transitioning from cvs to git
- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption
 - Changesets are "per file" in cvs while they are "whole project" under git – easier to revert, but no partial checkouts
 - More logical tagging
 - Easier branching
 - More fault tolerant renaming

Software - git

- Transitioning from cvs to git
- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption
 - Changesets are "per file" in cvs while they are "whole project" under git – easier to revert, but no partial checkouts
 - More logical tagging
 - Easier branching
 - More fault tolerant renaming
 - Binary file support

Software - git

Transitioning from cvs to git

- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption
 - Changesets are "per file" in cvs while they are "whole project" under git – easier to revert, but no partial checkouts
 - More logical tagging
 - Easier branching
 - More fault tolerant renaming
 - Binary file support
 - etc.

Software - git

Transitioning from cvs to git

- Advantages of git over cvs
 - Changes in git are atomic more robust to interruption
 - Changesets are "per file" in cvs while they are "whole project" under git – easier to revert, but no partial checkouts
 - More logical tagging
 - Easier branching
 - More fault tolerant renaming
 - Binary file support
 - etc.
- About 1/3 done ... reduction pipelines and libraries

