CHARA 2015 Towards Adaptive Optics at CHARA

CHARA

Precise Sizes of Exoplanet Hosts Identified by TESS Russel White (GSU)

GeorgiaStateUn

the Transiting Exoplanet Survey Satellite

A NASA mission, scheduled for launch in 2017

Observatoire - LESIA

NASA's Kepler Spacecraft

Many Seminal Results -One in five has an Earthsize planet in the Habitable zone; multiplanets are common, etc.

The Need for Radii

A transiting planet's radius is determined relative to the host star's radius (r^2 / R^2)

(also habitable zone, orbital obliquity... Sam's talk)

Asteroseismology provides a density, and with a radius, can determine the stellar mass.

CHARA 2015 Towards Adaptive Optics at CHARA

CHARA Measures Precise Small Angular Diameters

θ_{HR 8799} = 0.342 ± 0.008 mas (2% precision! ... with PAVO)

CHARA detection limits

		Res.	Mag limit	Mag limit	Mag limit
Mode	Band	λ / 2B	Current	Tip tilt	Full AO
Classic	Н	0.51 mas	7.0	8.5?	9.0
PAVO	~765 nm	0.24 mas	7.0	9.5?	10.0

The TESS Dwarf Catalog

The Catalog from which 200,000 dwarfs will be selected for TESS monitoring (I < 13, T_{eff} < F5)

see Stassun, Pepper, Paegert, De Lee, Sanchis-Ojeda (2014; arXiv:1410.6379)

- From a cross-match of 2MASS, NOMAD, Tycho2, Hipparcos, APASS, and UCAC4
- T_{eff} from colors, log g from reduced proper motion

Dwarf sample is still contaminated by subgiants (up to 50%)

For bright stars, GAIA will determine distances to << 1% precision

RA

Summary

TESS science (exoplanets, asteroseismology) will be enhanced greatly with precise size measurements

With Full AO, CHARA should be able to resolve at least ~1% of dwarfs surveyed

(sample could grow considerably with GAIA distances)

bservatoire