On-sky ability of ALOHA/CHARA at 1.55 μ m to detect astronomical sources in H band

P. Darré, R. Baudoin, L. Grossard, L. Delage, F. Reynaud XLIM, UMR CNRS 7252, France

With the collaboration of the CHARA team

CHARA

CHARA meeting 2016 - Nice

Introduction

- Implementation of a prototype operating at 1.55 μm and converting the light in the visible domain (630 nm)
- Validation of the ALOHA concept in laboratory (cf. introduction by François Reynaud) :
 - Conservation of fringe constrast and phase closure after SFG process (Brustlein & al., 2008 / Ceus & al., 2011)
 - Detection ability in photon counting regime (Ceus & al., 2013)
 - Achievement of spatial coherence analysis of a blackbody source through SFG process (Gomes & al., 2013)
- Current investigations : concept validation on-sky
 - Photometric configuration (2014)
 - Interferometric configuration (2015)

Presentation of the ALOHA setup

Experimental setup

Implementation on CHARA focal lab

Connection of the ALOHA fibers into the FLUOR injection module

Fibres routing through the wall ---> vibrations !!

Implementation of the setup in the room next to the focal lab

Transmission of ALOHA

Global transmission of ALOHA : 0.3 %

Photometric testing (2014)

Photometric testing

Goal: Demonstration of the instrument ability to detect a low flux using a conversion stage

 \blacktriangleright Photometric investigation in H band (at 1.55 µm) using a single arm of the interferometer.

> Addition of an intensity modulator (-6 dB flux loss) to recover the signal at the output.

Signal processing

Modulation with a squared waveform at f = 200 Hz

$$SNR = \frac{\left| \langle \tilde{X}(f_0) \rangle \right|^2 - \langle N_c \rangle}{\sigma_{RMS}} \quad \longleftarrow$$

Photometric testing: results

- ▶ **Coherent** integration of the frame $\tilde{X}(f)$ over N frames
- Instrumental limiting magnitude: SNR > 3 criterion
- LN Virgo (2.2 mag in H band): faintest source detected

Stellar source	$\mathrm{H}_{\mathrm{mag}}$	date	atmospheric coherence length r_0 (cm) ^a	Seeing (arcsec)	integration time ΔT (sec)	SNR
Alpha Boo	-2.8	2014 May 11	4	2.8	350	34.1
R Leo	-1.9	2014 May 12	7	1.6	350	32.7
Gamma Her	-1.8	2014 May 13	3.5	3.2	350	18.8
Omega Virgo	0.0	2014 May 12	6	1.9	720	11.5
Upsilon Boo	0.5	2014 May 12	6	1.9	720	10.1
FP Virgo	1.4	2014 May 14	10	1.1	800	6.4
LN Virgo	2.2	2014 May 14	10	1.1	900	3.0

η = 0,9 % Δλ = 0.6 nm

(Baudoin & al., 2016)

Interferometric testing (2015)

Performance estimation (1)

Next step: Evalutation of the limiting magnitude in interferometric mode

- > Integration on the squared modulus of the spectrum $\langle |\tilde{X}(f)|^2 \rangle$ (piston effect : **incoherent** detection)
- Signal-to-noise ratio

$$S/N = \frac{\langle |\widetilde{X}(f_{mod})|^2 \rangle - \langle N_c \rangle}{RMS(\langle |\widetilde{X}(f)|^2 \rangle)}$$

Simulation

Performance estimation (2)

Simulated performance of the interferometric configuration at CHARA (piston effect over the frame not simulated)

Simulated SNR for a 1.5 mag source for
different atmospheric coherence length $\rm r_o$
(Integration time over 20 min)

Seeing (arcsec)	$r_0 = 6 \text{ cm}$ 1.9	$r_0 = 10 \text{ cm}$ 1.1	$r_0 = 14 \text{ cm}$ 0.8
$\tau = 100 \text{ ms}$	2.6	25	82
$\tau = 200 \text{ ms}$	5.0	35	117
$\tau = 400 \; \mathrm{ms}$	6.5	47	163

Integration time over 20 min (individual	
frames of 200 ms)	

Seeing (arcsec)	$\begin{array}{c} r_0 = 3 \ \mathrm{cm} \\ 3.8 \end{array}$	$r_0 = 6 ext{ cm}$ 1.9	$\begin{array}{c} r_0 = 10 \ \mathrm{cm} \\ 1.1 \end{array}$	$r_0 = 14 ext{ cm}$ 0.8
$\mathrm{H}_{\mathrm{mag}}^{\mathrm{limit}}$	0.1	1.6	2.8	3.7

Improvement and Future prospects

- Calibration of the constrast : Addition of photometric channels and detection with the FLUOR camera
- Study the relation between the coherence time of atmospheric turbulence and the frame duration
- Integration of ALOHA in the focal lab ? (limitation of perturbation sources)
- N.A. FLUOR = 0,23 ; N.A. ALOHA = 0,12 ---> injection flux losses in fibers
- Fusion splicing of fibers: improvement of the SNR
- Increase of the analysed infrared bandwidth with simultaneous frequency conversion processes (Darré & al., 2015)