Flux latitude distribution in late-type rotating stars
or “gravity” darkening in late-type stars

Michel Rieutord
with Raphaël Raynaud (post-doc in Teheran)

Institut de Recherche en Astrophysique et Planétologie,
France

15 mars 2016
Outline

1. Introduction

2. The simulations
 - No magnetic field
 - With magnetic fields

3. Conclusions
1 Introduction

2 The simulations
 - No magnetic field
 - With magnetic fields

3 Conclusions
An old problem for eclipsing binaries

Figure: The light curve of TV Cas.

B-filter

$q = 0.405$

LCO

LCC

Rieutord & Raynaud
Flux latitude distribution in late-type rotating stars
Figure: A model of TV Cas: $T_{\text{cooler}}=5400$ K.
Modelling the light curve II
Djurasevic et al. 2003, 2006

Figure: Another model of TV Cas: $T_{\text{cooler}} = 5500$ K.
Conclusions

- The flux distribution influences the output of the modelling, namely the fundamental parameters of the stars.
- Binaries are difficult: let’s consider single (fast) rotating stars.
Gravity darkening in rotating stars

A simple approach assuming a barotropic radiative envelope shows that

\[\vec{F} = -\chi \vec{\nabla}T \]

if barotropic \(T \equiv T(\Phi) \) and

\[\vec{F} = -\chi(\Phi)T'(\phi)\vec{\nabla}\Phi \implies \vec{F} \propto g_{\text{eff}} \]

von Zeipel (1924). So less effective gravity means less flux. VZ24 is approximate because stars are not exactly barotropic...

\[T_{\text{eff}} \propto g_{\text{eff}}^\beta, \quad \text{with} \quad \beta = 1/4 \quad \text{for} \quad \text{VZ24} \]
With 2D-stellar models (computed with ESTER), we studied this problem and could establish that

$$T_{\text{eff}} \propto g_{\text{eff}}^\beta$$

$$\beta \sim \frac{1}{4} - \frac{\varepsilon}{3}$$

where $\varepsilon = (R_e - R_p)/R_e$ is the centrifugal flattening of a star. Ref: Espinosa Lara & Rieutord (2011), Rieutord (2015).
Figure: Altair seen by CHARA (Monnier et al. 2007).
Gravity darkening exponents: theory versus observations

Figure: β versus ϵ. β Cas is F2, α Cep is A7...
The flux distribution also influences the output of the modelling, namely the fundamental parameters of the stars.

- The situation of early-type stars is well understood.
- The case of late-type stars is not understood.

Until now people have used Lucy (1967) prescription which says

\[\beta \sim 0.08 \]

for solar-type stars. We have shown that this exponent comes from the opacity laws imposed by H\(^-\) ions in solar type stars and therefore from the flux distribution of the upper photosphere.
The flux distribution also influences the output of the modelling, namely the fundamental parameters of the stars.

- The situation of early-type stars is well understood
- The case of late-type stars is not understood.

Until now people have used Lucy (1967) prescription which says

$$\beta \sim 0.08$$

for solar-type stars. We have shown that this exponent comes from the opacity laws imposed by H^- ions in solar type stars and therefore from the flux distribution of the upper photosphere.
In a convective envelope the flux is governed by buoyancy which is perturbed by the Coriolis acceleration.

Convection is less super-critical at the poles than at the equator \Rightarrow pole darkening.

Buoyancy is weaker at equator than at pole, \Rightarrow equator darkening.

Who wins? Coriolis effect? Centrifugal effect?

what about magnetic fields?
Outline

1. Introduction

2. The simulations
 - No magnetic field
 - With magnetic fields

3. Conclusions
We want to understand the role of the Coriolis force which is the main source of anisotropy. Make simulations of convection in a rotating spherical shell. Use the MAGIC code at the anelastic approximation (Gastine & Wicht 2012, Icarus). Impose:
- the entropy drop (Rayleigh number)
- rotation rate (Ekman number, Rossby number)
- density stratification
The simulations
A look at the flow

Figure: Axisymmetric parts of the flow at $Ra/Ra_c=1.5$ and $N_\rho = 2$.

Rieutord & Raynaud
Flux latitude distribution in late-type rotating stars
The simulations

Flux distribution while increasing convection strength

Figure: Flux distribution in latitude. $E_k=3 \times 10^{-4}$, $n = 2$, $P = 1$, $\eta = 0.7$, $N_\rho = 6$, $Ra_c^M = 1.038 \times 10^6$.

Rieutord & Raynaud
Flux latitude distribution in late-type rotating stars
Flux distribution in latitude

- **Introduction**
- **The simulations**
- **Conclusions**

No magnetic field
With magnetic fields

Flux latitude distribution in late-type rotating stars

Rieutord & Raynaud

Flux distribution in latitude
Flux distribution in latitude

Rieutord & Raynaud

Flux latitude distribution in late-type rotating stars
Flux distribution in latitude: thick shell

$R \alpha = 4.00 \times 10^6; R \alpha / R \alpha_c = 4.32; N = 1.5$

Rieutord & Raynaud

Flux latitude distribution in late-type rotating stars
Introduction
The simulations
Conclusions

No magnetic field
With magnetic fields

Flux distribution on the outer sphere (thick shell)

run0687
$$N u(r_o)$$

Rieutord & Raynaud
Flux latitude distribution in late-type rotating stars
Flux distribution in latitude, with magnetic fields

\[Ra = 9.00 \times 10^6 \; ; \; Ra/R_{ac} = 4.13 \; ; \; N_\phi = 2.5 \]

Rieutord & Raynaud

Flux latitude distribution in late-type rotating stars
Flow with magnetic fields

Figure: Axisymmetric parts of the flow at $Ra/Ra_c=4.1$ and $N_\rho = 2.5$, $\eta = 0.35$.
Flux distribution on the outer sphere with \vec{B}

Run0683
$Nu(r_o)$

1.05 3.75 6.45 9.15 11.85 14.55 17.25 19.95 22.65 25.35
Outline

1. Introduction

2. The simulations
 - No magnetic field
 - With magnetic fields

3. Conclusions
Preliminary conclusions

- Without \vec{B}: there is marked influence of Coriolis at $\text{Ra/Ra}_c \leq 20$ and at low density contrast.
 - At high density contrast upper layers have short turn-over times: screening effects of deep anisotropic flows.
 - Magnetic fields seem to redistribute the fluxes.
Preliminary conclusions

- Without \vec{B}: there is marked influence of Coriolis at $\frac{Ra}{Ra_c} \leq 20$ and at low density contrast.
- At high density contrast upper layers have short turn-over times: screening effects of deep anisotropic flows.
- Magnetic fields seem to redistribute the fluxes.
Preliminary conclusions

- Without \vec{B}, there is marked influence of Coriolis at $\text{Ra}/\text{Ra}_c \leq 20$ and at low density contrast.
- At high density contrast upper layers have short turn-over times: screening effects of deep anisotropic flows.
- Magnetic fields seem to redistribute the fluxes.
Outlooks

- If Coriolis effect is screened, then centrifugal effects might show up
- ... as long as magnetic fields do make spots on a large fraction of the surface.
- We’ll observe θ Sco and ε Sgr with VLTI (Armando Domiciano, F. Vakili & I). They are fast rotating cool and big stars.
- Observing rapidly rotating F-stars (main-sequence) would be very interesting.
Outlooks

- If Coriolis effect is screened, then centrifugal effects might show up
- ... as long as magnetic fields do make spots on a large fraction of the surface.
- We’ll observe θ Sco and ε Sgr with VLTI (Armando Domiciano, F. Vakili & I). They are fast rotating cool and big stars.
- Observing rapidly rotating F-stars (main-sequence) would be very interesting.
If Coriolis effect is screened, then centrifugal effects might show up

... as long as magnetic fields do make spots on a large fraction of the surface.

We’ll observe θ Sco and ε Sgr with VLTI (Armando Domiciano, F. Vakili & I). They are fast rotating cool and big stars.

Observing rapidly rotating F-stars (main-sequence) would be very interesting.