Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)

Ludovic Szemendera - Xlim Photonics
PhD supervisors: F. Reynaud and L. Grossard

Monday 14th March 2016
Contents

1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives
1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives
Several instrument projects adapted for MIR and FIR have already been proposed:

Their sensitivities are limited by the noise generated by optical elements (black body emissions).
Advantages of the synthetic aperture and nonlinear optics combination

\[\nu_c = \nu_p + \nu_s \]

Transposing infrared signal into visible or NIR domain

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu\)m (L band)
Advantages of the synthetic aperture and nonlinear optics combination

Transposing infrared signal into visible or NIR domain

- avoid noise linked to the detection chain;
Advantages of the synthetic aperture and nonlinear optics combination

Transposing infrared signal into visible or NIR domain

- avoid noise linked to the detection chain;
- allows to benefit optical guided elements (fibers);
Advantages of the synthetic aperture and nonlinear optics combination

- Transposing infrared signal into visible or NIR domain
- Avoids noise linked to the detection chain
- Allows to benefit optical guided elements (fibers)
- Allows to realise spectral filtering (tunable)

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Advantages of the synthetic aperture and nonlinear optics combination

\[n_c = n_p + n_s \]

Transposing infrared signal into visible or NIR domain

- avoid noise linked to the detection chain;
- allows to benefit optical guided elements (fibers);
- allows to realise spectral filtering (tunable);
- allows to benefit efficient detectors (silicon).

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu\)m (L band)
1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives
Frequency transposition thanks to sum frequency generation

We use SUM FREQUENCES (SFG)

- 2nd order nonlinear process ($\chi^{(2)}$)
Frequency transposition thanks to sum frequency generation

We use SUM FREQUENCES (SFG)

- 2nd order nonlinear process (\(\chi^{(2)}\))
- no intrinsic noise (Louisel)
Sum Frequency Generation (SFG)

It is led by two equations:

\[\nu_c = \nu_p + \nu_s \]
Sum Frequency Generation (SFG)

It is led by two equations:

- **Power conservation:**
 \[\nu_c = \nu_p + \nu_s \]

- **Quasi Phase Matching condition:**
 \[\Delta k = \frac{2\pi n_p}{\lambda_p} + \frac{2\pi n_s}{\lambda_s} - \frac{2\pi n_c}{\lambda_c} - \frac{2\pi}{\Lambda} = 0 \]
Sum Frequency Generation (SFG)

It is led by two equations:

1. **Power Conservation**:
 \[\nu_c = \nu_p + \nu_s \]

2. **Quasi Phase Matching Condition**:
 \[\Delta k = \frac{2\pi n_p}{\lambda_p} + \frac{2\pi n_s}{\lambda_s} - \frac{2\pi n_c}{\lambda_c} - \frac{2\pi}{\Lambda} = 0 \]

Normalised efficiency is given by:

\[\eta_n(\nu_s, \nu_p) = \text{sinc}^2 \left(\frac{\Delta k L}{2} \right) \]
Our nonlinear crystals: PPLN

PPLN: Periodically Poled Lithium Niobate
Our nonlinear crystals: PPLN

Key features of the crystals given by the university of Paderborn (Germany 🇩🇪):
- they are guided (single mode @3.39 µm);

PPLN: Periodically Poled Lithium Niobate
Our nonlinear crystals: PPLN

Key features of the crystals given by the university of Paderborn (Germany 🇩🇪):

- they are guided (single mode @3.39 µm);
- they have got "tapers";

PPLN: Periodically Poled Lithium Niobate
Our nonlinear crystals: PPLN

Key features of the crystals given by the university of Paderborn (Germany 🇩🇪):

- they are guided (single mode @3.39 µm);
- they have got "tapers";
- they have an HR mirror @1064 nm;

PPLN: Periodically Poled Lithium Niobate

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Our nonlinear crystals: PPLN

Key features of the crystals given by the university of Paderborn (Germany)

- they are guided (single mode @3.39 µm);
- they have got "tapers";
- they have an HR mirror @1064 nm;
- their output face is slanted (Fresnel’s reflection ∼ 14% @1064 nm).

PPLN: Periodically Poled Lithium Niobate
Cristal’s temperature control

PPLN’s temperature are controlled in order to:

Implementation of ALOHA up-conversion interferometer at 3.39 µm (L band)
Cristal’s temperature control

- PPLN’s temperature are controlled in order to:
 - obtain a tunable spectral filtering;
Cristal’s temperature control

PPLN’s temperature are controlled in order to:

- obtain a tunable spectral filtering;
- avoid temperature gradients (better efficiency and stability).
1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives
Implementation of ALOHA up-conversion interferometer at 3.39\(\mu\)m (L band)
Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Efficiency measurement

- P_S: signal power
 ($\lambda_S = 3.39 \, \mu m$)

- P_C: converted signal power
 ($\lambda_C = 810 \, nm$)

- P_P: pump power
 ($\lambda_P = 1064 \, nm$)

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu\)m (L band)
Efficiency measurement

- P_S: signal power ($\lambda_s = 3.39 \, \mu m$)
- P_C: converted signal power ($\lambda_c = 810 \, nm$)
- P_P: pump power ($\lambda_p = 1064 \, nm$)

$$\eta = \frac{P_C}{P_S}$$

According to this definition, η includes:
- SFG efficiency
Efficiency measurement

\[\eta = \frac{P_C}{P_S} \]

According to this definition, \(\eta \) includes:
- SFG efficiency
- Insertion losses

- \(P_S \): signal power \((\lambda_s = 3.39 \, \mu m)\)
- \(P_C \): converted signal power \((\lambda_c = 810 \, nm)\)
- \(P_P \): pump power \((\lambda_p = 1064 \, nm)\)
Efficiency measurement

- P_S: signal power ($\lambda_s = 3.39 \, \mu m$)
- P_C: converted signal power ($\lambda_c = 810 \, nm$)
- P_P: pump power ($\lambda_p = 1064 \, nm$)

$$\eta = \frac{P_C}{P_S}$$

According to this definition, η includes:

- SFG efficiency
- Insertion losses
- Losses due to filtering
First in-lab results with a high flux MIR source

Experimental time fringes

Fringes SPD

Experimental conditions

- \(P_s \approx 500\mu W \)
- \(\eta \approx 1 \cdot 10^{-5} \)
First in-lab results with a high flux MIR source

Experimental conditions
- $P_s \approx 500\,\mu W$
- $\eta \approx 1 \cdot 10^{-5}$

We got first interferometric fringes from a converted signal at $810\,\text{nm}$ from a MIR signal at $3.39\,\mu\text{m}$

$$C_{DSP}^2 = \frac{2 \cdot \sum B(v_i)}{B_0}$$

Measured contrast is 97.2%.

Publication: In-lab ALOHA mid-infrared up-conversion interferometer with high fringe contrast @$\lambda = 3.39\,\mu\text{m}$ - MNRAS vol.457 - n°3 - fev.2016
Method of contrast measurement in photon counting regime

- Time interferogram

Mesures du contraste

1. time frame acquisition (single photon counting module)
Method of contrast measurement in photon counting regime

\[|\text{FFT}(P_s)|^2 = B(v) \]

1. time frame acquisition *(single photon counting module)*
2. calculation of the SPD on each frame *(VI LabView©)*

Mesures du contraste

- Time interferogram
- Spectral Power Density
- Fringes peack
- Frequency
- Noise

Implementation

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Method of contrast measurement in photon counting regime

Mesures du contraste

1. time frame acquisition \textit{(single photon counting module)}

2. calculation of the SPD on each frame \textit{(VI LabView©)}

3. integration: summation on all SPD \textit{(VI LabView©)}
Method of contrast measurement in photon counting regime

Mesures du contraste

1. time frame acquisition *(single photon counting module)*
2. calculation of the SPD on each frame *(VI LabView©)*
3. integration : summation on all SPD *(VI LabView©)*

Experimental conditions

- Frame time : 400 ms
- Number of frames : from 300 to 1200
Contrast calculation

\[B_0 = (N_{hv} + EODC)^2 + \langle N_{cp} \rangle \]

\[B_{vf} = N_{mod}^2 + \langle N_{cp} \rangle \]
Contrast calculation

\[B(v) = (N_{hv} + EODC)^2 + \langle N_{cp} \rangle \]

\[B_{vf} = N_{mod}^2 + \langle N_{cp} \rangle \]

\[B(v_f) \]

- \(N_{mod} \): converted photons (on fringe channel)
Contrast calculation

\[B(v) = (N_{hv} + EODC)^2 + \langle N_{cp} \rangle \]

\[B_{vf} = N_{mod}^2 + \langle N_{cp} \rangle \]

- \[N_{mod} \]: converted photons (on fringe channel)
- \[\langle N_{cp} \rangle \]: average number of photons

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu \)m (L band)
Contrast calculation

\[B(v_f) = N_{mod} \] converted photons (on fringe channel)

\[\langle N_{cp} \rangle_t \] : average number of photons

\[B_0 = (N_{hv} + EODC)^2 + \langle N_{cp} \rangle \]

\[B_{vf} = N_{mod}^2 + \langle N_{cp} \rangle \]

\[N_{hv} \] : converted photons

\[\langle N_{cp} \rangle_t \] : average number of photons

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu\)m (L band)
Contrast calculation

B(ν_f)
- N_{mod} : converted photons (on fringe channel)
- ⟨N_{cp}⟩_t : average number of photons

B_0
- N_{hv} : converted photons
- EODC : electro-optic dark count

\[B_0 = (N_{hv} + EODC)^2 + \langle N_{cp} \rangle \]

\[B_{vf} = N_{mod}^2 + \langle N_{cp} \rangle \]
Contrast calculation

\[B(v_f) = (N_{hv} + EODC)^2 + \langle N_{cp} \rangle \]

\[B_0 = N_{hv} \nu + EODC \]

\[B_{vf} = N_{mod}^2 + \langle N_{cp} \rangle \]

\[C = \frac{\sqrt{B_{vf} - \langle N_{cp} \rangle_t}}{\sqrt{B_0 - \langle N_{cp} \rangle_t - EODC}} \]

- \(N_{mod} \): converted photons (on fringe channel)
- \(\langle N_{cp} \rangle_t \): average number of photons
- \(N_{hv} \): converted photons
- \(EODC \): electro-optic dark count

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Thermal background

\[\lambda_c = 810\text{nm} \quad \lambda_s = 3.39\mu\text{m} \]

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu\text{m}\) (L band)
Thermal background

\[\lambda_c = 810 \text{nm} \quad \lambda_s = 3.39 \mu \text{m} \]

Blackbody emission

\[T = 1150 \text{K} \quad T = 1000 \text{K} \quad T = 850 \text{K} \]

Implementation of ALOHA up-conversion interferometer at 3.39 \(\mu \text{m} \) (L band)
Thermal background

\[\lambda_c = 810 \text{nm} \quad \lambda_s = 3.39 \mu \text{m} \]

Blackbody emission

\[T = 1150 \text{K} \quad T = 1000 \text{K} \quad T = 850 \text{K} \]

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu \text{m} \) (L band)
Thermal background

\[\lambda_c = 810\text{nm} \quad \lambda_s = 3.39\mu\text{m} \]

Blackbody emission

\[T = 1150\text{K} \quad T = 1000\text{K} \quad T = 850\text{K} \]

\[\lambda_{\text{max}} = 2.5\mu\text{m} \quad \lambda_{\text{max}} = 2.9\mu\text{m} \quad \lambda_{\text{max}} = 3.4\mu\text{m} \]

Experimentally

With 100 mW pump power, we observe 20cp/s due to thermal effects.
Parametric fluorescence and cascading effect

Principal

1. a pump photon generates a signal photon and an idler one
Parametric fluorescence and cascading effect

Principal

1. A pump photon generates a signal photon and an idler one.
2. The signal photon is recombined with a pump photon (SFG) to produce a photon at 810 nm.

Implementation of ALOHA up-conversion interferometer at 3.39 µm (L band)
Parametric fluorescence and cascading effect

Principal

1. A pump photon generates a signal photon and an idler one.
2. The signal photon is recombined with a pump photon (SFG) to produce a photon at 810 nm.

Experimentally

With 100 mW pump power, we observe 20 cp/s due to parametric fluorescence.
Results on the photon counting regime

Signal power @1\text{pW} on each interferometric arm
($\approx 2 \times 10^7$ photons/s)

- contrast : 98.6%
- signal to noise ratio : 190

SnR and Contrast evolution

Implementation of ALOHA up-conversion interferometer at 3.39\text{µm} (L band)
Results on the photon counting regime

Signal power @1pW on each interferometric arm
(≈ 2 × 10⁷ photons/s)
- contrast : 98.6%
- signal to noise ratio : 190

Signal power @80fW on each interferometric arm
(≈ 10⁶ photons/s)
- contrast : 94%
- signal to noise ratio : 6.7

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Conclusion: overview of done work

At the moment, ALOHA project has a promising balance:

1. building and tests with the in-lab set up
Conclusion: overview of done work

At the moment, ALOHA project has a promising balance:

1. building and tests with the in-lab set up
2. first fringes with a high flux source
Conclusion: overview of done work

At the moment, ALOHA project has a promising balance:

1. building and tests with the in-lab set up
2. first fringes with a high flux source

MNRAS February 2016
Conclusion: overview of done work

At the moment, ALOHA project has a promising balance:

1. building and tests with the in-lab set up
2. first fringes with a high flux source \(\rightarrow\) MNRAS February 2016
3. first fringes on the photon counting regime

Implementation of ALOHA up-conversion interferometer at 3.39\(\mu\)m (L band)
Conclusion: overview of done work

At the moment, ALOHA project has a promising balance:

1. building and tests with the in-lab set up
2. first fringes with a high flux source \rightarrow MNRAS February 2016
3. first fringes on the photon counting regime \rightarrow publication in progress
New tracks for the future:

1. Improvement on performances (new crystals, architecture, etc)

Implementation of ALOHA up-conversion interferometer at 3.39μm (L band)
Broad perspectives

New tracks for the future:

1. Improvement on performances (new crystals, architecture, etc).
2. Fringes with a blackbody source.

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)
Broad perspectives

New tracks for the future:

1. Improvement on performances (new crystals, architecture, etc)
2. Fringes with a blackbody source
3. Implementation on site

Implementation of ALOHA up-conversion interferometer at 3.39μm (L band)
Thank you for your attention