

NPOI Current Status and Recent Science

Ellyn Baines

Naval Research Laboratory

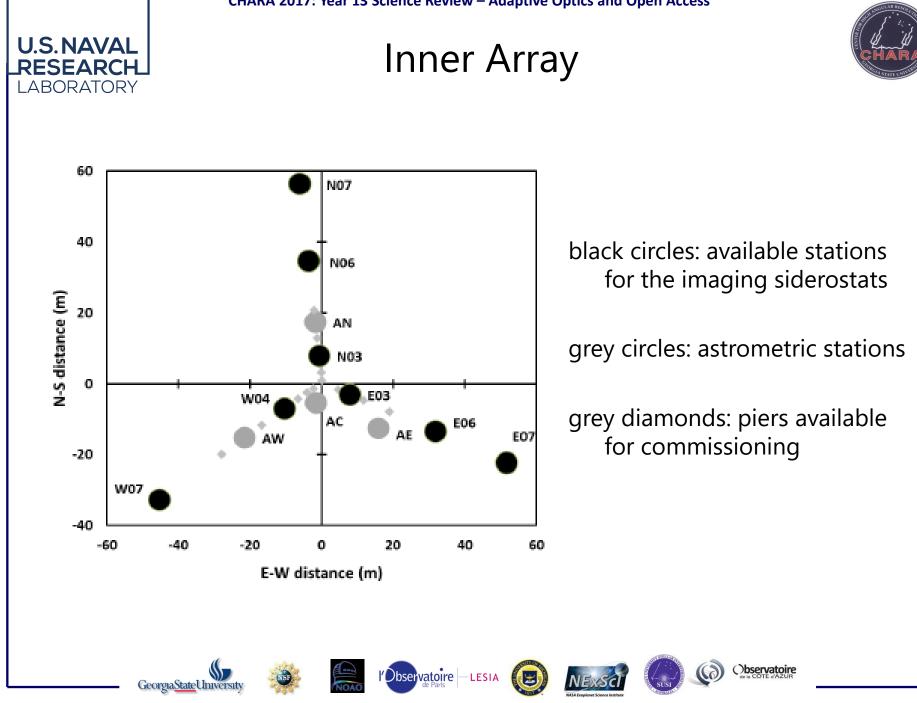
Navy Precision Optical Interferometer

CHARA 2017: Year 13 Science Review – Adaptive Optics and Open Access

- Joint project between NRL, Lowell Observatory, and USNO
- Observes in visible wavelengths (550 to 860 nm)
- Consists of two nested arrays:
 - 4 astrometric stations
 - 10 imaging array stations distributed among 30 piers
- Combines up to 6 beams
- Apertures are 12-cm
- Current magnitude limit: 6.0
- Baselines span 9 to 98 m
- Soon will have 432 m baseline
- Beam combiners:
 - Classic
 - New Classic

GeorgiaStateUniversit

- VISION



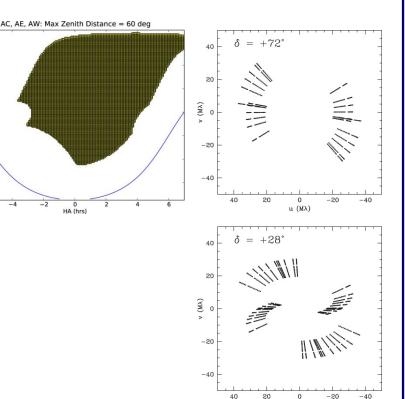
bservatoire - LESIA

CHARA 2017: Year 13 Science Review – Adaptive Optics and Open Access

NPOI Bright Star Multiplicity Survey

Hutter et al. 2016, ApJSS, 227, 4

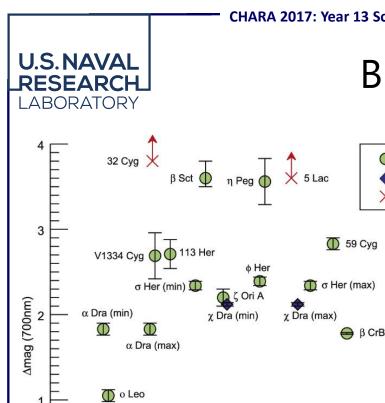
- Project born from past and current speckle programs
- Goal: test the contention that speckle and RV surveys have closed the gap in orbital period coverage
- Interferometry offers a single technique for multiplicity detection over separations/periods spanning classic visual doubles to interacting binaries.


Observations

- Used AC, AE, AW stations
 - Best sky coverage
 - Good UV coverage
- Sample derived from TPF list:
 - Stars within 30 pc
 - $m_{\rm V} \le 4.30$ (limit c. 2004)
 - − $0.3 \le B V \le 1.2$ (F0 to mid K)
 - Dec ≥ -20°
 - Captured 90%/28% of III/V stars relative to Hipparcos completeness
 - 59 sources

GeorgiaStateUniver

- 1389 multi-baseline observations of 41 of 59 stars on 46 nights
- 705 observations of 15 non-program binaries



u (Mλ)

CHARA 2017: Year 13 Science Review – Adaptive Optics and Open Access

Binary Results

∆mag Test Binaries

Program Stars Nondetections

10 UMa

ς ζ Her

🔶 β Del

γ Vir

Model fits to data:

- 13 of 15 test binaries
- 6 program stars

NPOI can detect binaries at $\Delta m \leq 3.0$ for separations 3 – 860 mas

First detection of secondary of β Scuti with precisely measured ρ and θ (8 nights)

Observatoire

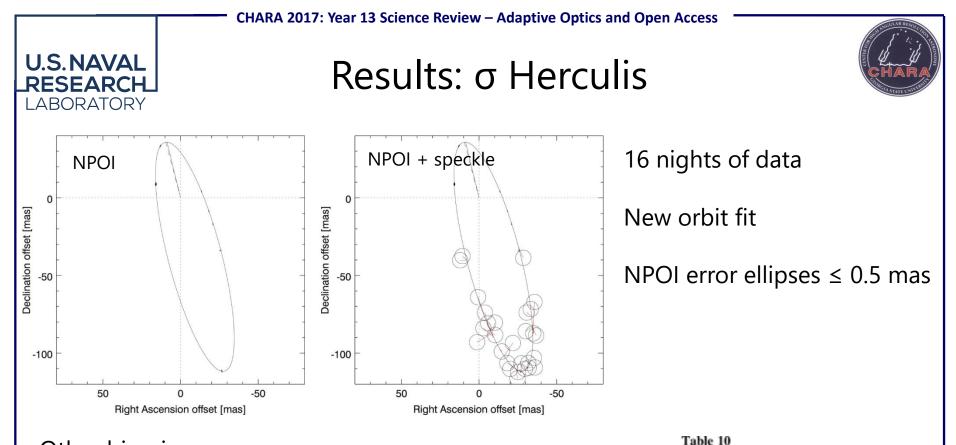
Inner angular separation limit set by resolution of modest baselines Outer limit set by bandwidth smearing, up to 90% reduction in V^2 at 860 nm

🔂 ζ UMa

0

🔷 α Aur

Log sep (mas)



к ИМа

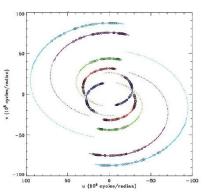
Other binaries:

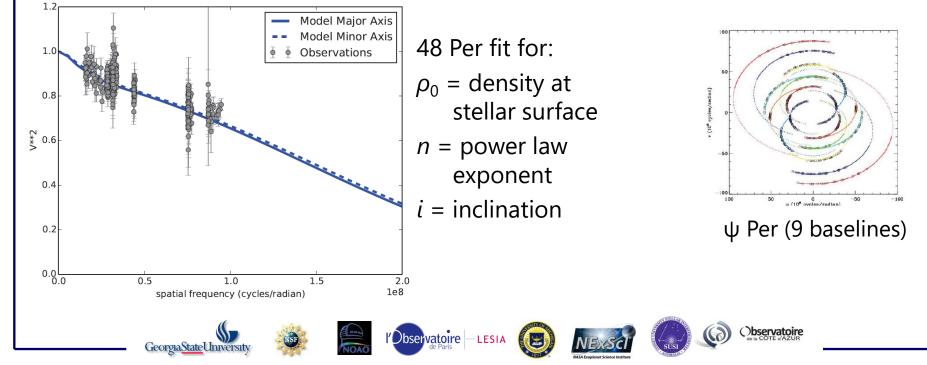
- Position measurements of secondary for 19 systems
- First accurate measurements for β Scuti
- Limiting magnitude went from 4.3 (2004)
 to 6.0 (now), which would increase sample
 to 51 stars within 17 pc

GeorgiaStateUniver

Parameter	Value	
a (mas)	76.21 ± 0.27^{a}	
e	0.5135 ± 0.0028	
i (deg)	105.25 ± 0.51	
ω (deg)	184.97 ± 0.40	
Ω (deg) (J2000.0)	14.95 ± 0.47	
P (days)	2706.19 ± 4.89	
T (JD2440000.0)	10665.4 ± 2.68	
χ^2_{ν}	1.34	

 σ Her—Orbital Elements




Disks of 48 Per and ψ Per

Grzenia et al. 2016, ASPC, 119

- Be disk stars
- 377 observations in the H α band
- Used the non-LTE code BEDISK, BERAY, and 2dDFT

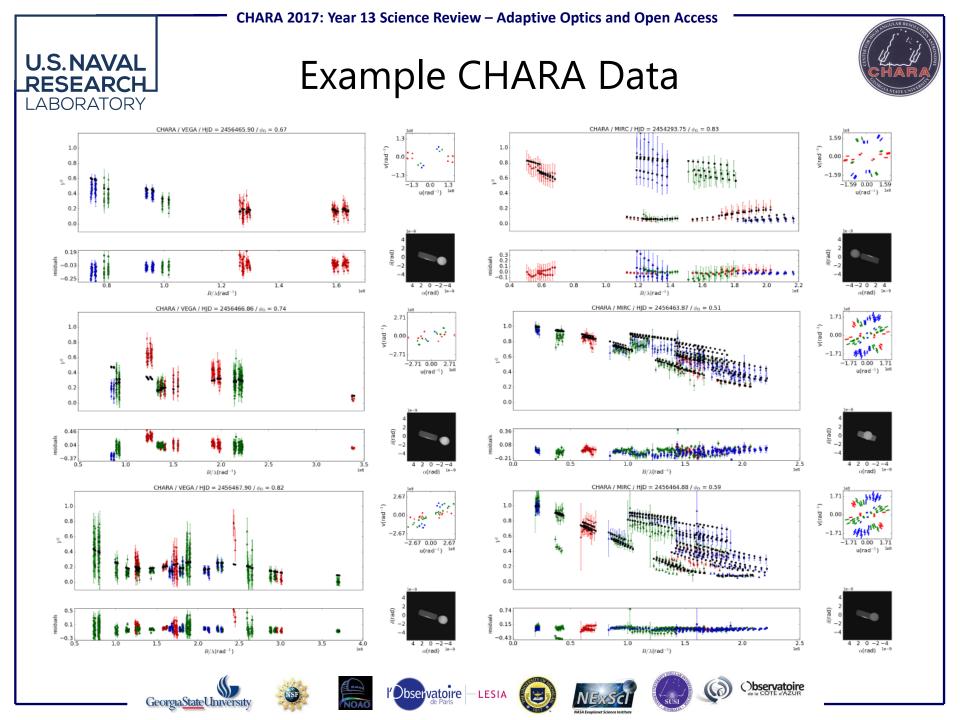
48 Per (5 baselines)

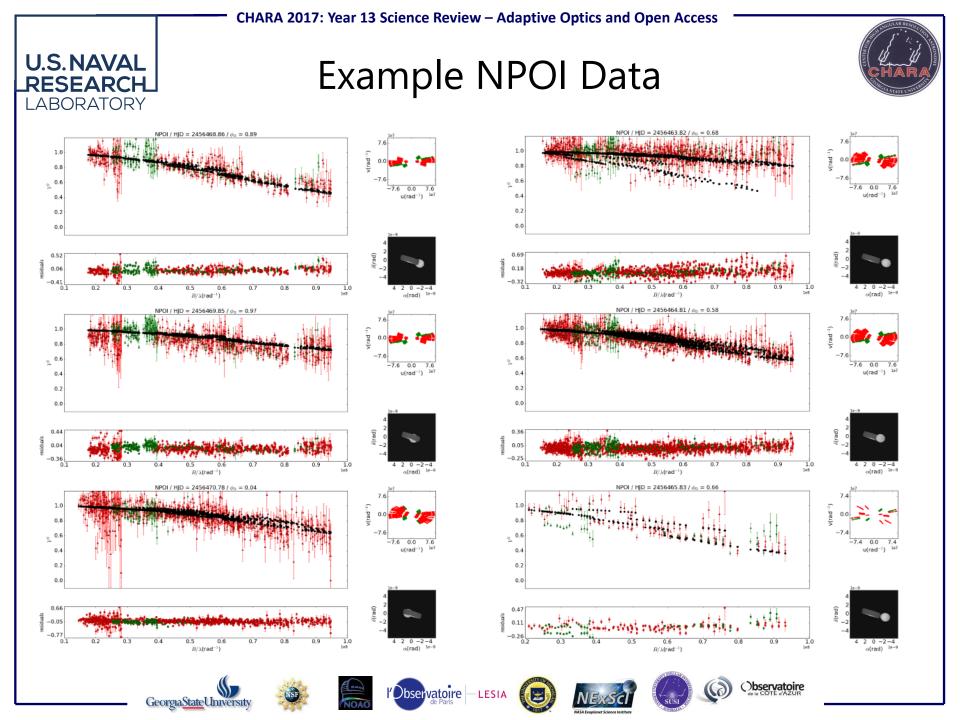
β Lyrae's Accretion Disk

CHARA CHARA

Nemravová et al. 2017, A&A, in press

- β Lyr A: rapid mass transfer via an accretion disk
- Observed using 3 beam combiners on 2 instruments:
 - NPOI Classic, 562 861 nm, two 3-station triangles
 - CHARA MIRC, H-band, 6 telescopes
 - CHARA VEGA, R=5,000, 2 or 3 telescopes
- Used 4 calibrators
- Photometry was monitored for 3 years.





Disk Configuration

- Models were fitted for:
 - Shape, size, radial density, T profile
 - A possible hot spot
 - Orientation on the sky
 - Distance

GeorgiaStateUniversit

U.S. NAVAL

RESEARCH LABORATORY

				Disk shape / Radial temperature profile					
Param.	Unit	Min	Max	slab/pl	slab/sd	wedge/pl	wedge/sd		
i	(deg)	91	95	92.59±0.24 0.86	$92.55 \pm 0.74_{0.17}$	94.53±0.43 0.57	$94.53 \pm 0.43 \\ 0.57$		
Ω	(deg)	251	255	252.71±0.65 1.82	252.88±1.66 0.92	253.40±0.86 1.27	253.40 ± 0.86 1.27		
T_0	(K)	23 000	32 000	$31250\pm^{740}_{3340}$	$26740 \pm 1450_{1460}$	24720±2180 650	$24720\pm^{2180}_{650}$		
ρ_0	(g cm ⁻³)	5.10-8	5.10-6	$7.38\pm^{1.73}_{3.48} \times 10^{-7}$	$19.50 \pm \frac{8.43}{15.74} \times 10^{-7}$	$7.38 \pm \frac{2.59}{4.89} \times 10^{-7}$	$7.26\pm^{1.48}_{22.87} \times 10^{-7}$		
α_{T}		-1.1	-0.75	$-0.939\pm_{0.085}^{0.022}$	-	$-0.939\pm_{0.085}^{0.022}$	-		
$\alpha_{\rm D}$		-3.5	-0.80	$-2.06\pm_{0.16}^{0.26}$	$-2.72\pm_{0.17}^{0.49}$	$-2.72\pm_{0.41}^{0.27}$	$-2.81\pm_{0.41}^{0.27}$		
Rout	(R _☉)	26	33	$32.04 \pm 1.33^{0.85}$	31.17 ± 1.02	$31.17 \pm ^{1.22}_{1.02}$	$32.40 \pm ^{0.52}_{1.96}$		
H	(R _☉)	7.5	12	8.979 ± 0.021	$8.513 \pm 0.972 \\ 0.851$	$8.513 \pm 0.972 \\ 0.851$	$13.16\pm_{1.38}^{0.52}$		
d	(pc)	305	335	$325.0\pm^{4.5}_{7.0}$	$324.0\pm_{5.3}^{6.4}$	$324.0\pm_{5.3}^{6.4}$	$326.6\pm^{4.3}_{4.3}$		
$\chi^2_{\rm BLC}$				1.78	1.31	1.31	1.81		
$\chi^2_{\rm BV^2}$				4.06	4.08	4.08	4.08		
$\chi^2_{\rm B,CP}$				2.90	2.88	2.88	2.87		
$\begin{array}{c} \chi^2_{\rm R,LC} \\ \chi^2_{\rm R,V^2} \\ \chi^2_{\rm R,CP} \\ \chi^2_{\rm R,CP} \\ \chi^2_{\rm R} \end{array}$				3.60	3.58	3.58	3.60		
NLC				1 434					
N_{V^2}				15 936					
N _{CP}				6 869					

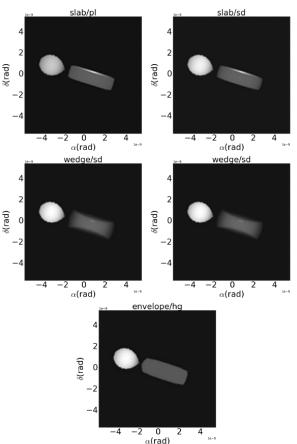
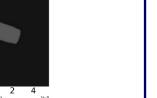
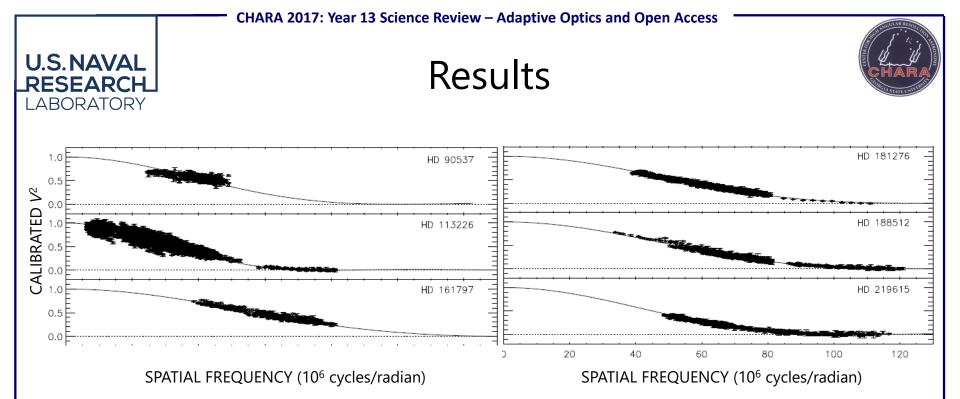



Fig. 3. Images of β Lyr for the different models of the accretion disk surrounding the gainer for wavelength 1000 mn and orbital phase 0.25. δ goes along north-south direction, and α along east-west direction. Above each panel shape of the accretion disk (see Fig. 2 for notation), and radial temperature profile. "pl" stands for power-law given by Eq. (8), "sd" for steady disk given by Eq. (7), and "hg" for isothermal profile.

Baines et al. 2016, SPIE, 9907, 3T

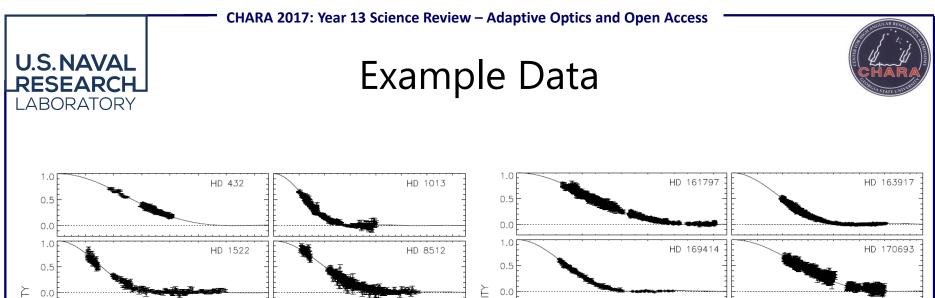

- Sample comes from the Penn State-Torun Planet Search (PTPS) survey
- Full sample is 744 giant stars; 455 with spectroscopic analysis completed
- Goal: provide more precise, model-independent radius
- Stellar parameters: T_{eff} , L, F_{BOL} , mass, age
- Planetary parameters: P, mass, $T_{surface}$
- NPOI can observe 25 of the stars have data on 6 so far
- CHARA will get more. (Hopefully.)

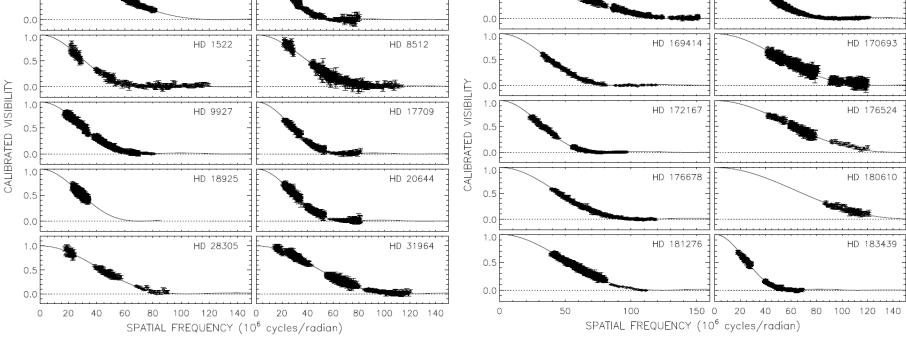
Name	# nights	# data points	$ heta_{ t LD}$ (mas)	R (R _{sol})	T _{eff} (K)
βLMi	7	281	2.618±0.044	13.28±0.38	4149±41
εVir	22	3954	3.321±0.023	11.99±0.10	5018±26
μ Her	23	328	1.952±0.012	1.74±0.01	5324±17
к Суд	11	1420	2.172±0.005	8.89±0.04	5022±22
βAql	6	133	2.166±0.009	3.19±0.02	4992±11
γ Psc	8	627	2.481±0.011	11.28±0.10	4834±24

Observatoire

Baines et al. in prep

- Data from the NPOI archive \rightarrow 2004 to 2016
- Spectral classes span B to M
- Luminosity classes: I (7), II (3), III (71), IV (3), V (6)
- Mostly a paper of long tables
- Determined the regular stuff: θ , R, T_{eff}, F_{BOL}, L, M, age





Deservatoire

