Long baseline interferometry in the visible: Recent progress on FRIEND project

Marc-Antoine Martinod
Denis Mourard, Karine Perraut, Philippe Berio, Jean-Michel Clausse, Anthony Meilland, and CHARA staff

CHARA Meeting – March 2016
Outline

- Short presentation of FRIEND prototype
- Coupling efficiency and limiting magnitude
- Instrumental visibility
- Closure phase
- Adaptive optics and injection
Short presentation of FRIEND prototype

\[< |V|^2 > = \frac{< E_{HF} >}{\int_{\Delta\lambda} \kappa(\lambda) \int_{\Delta x} < P_1(\lambda, x) P_2(\lambda, x) > \, dx \, d\lambda} \]
Observations

2016-09-29
- E1E2W2
- $r_0 = 10 \text{ cm}$
- 1 Cal:
 - HD3360: $m_R = 3.74$
- 1 Sci:
 - HD5394: $m_R = 2.32$

2016-09-30
- E1W2W1
- $r_0 = 14 \text{ cm}$
- 3 Cal:
 - HD3360: $m_R = 3.74$
 - HD2905: $m_R = 4.02$
 - HD3240: $m_V = 5.076$
- 2 Sci:
 - HD5394: $m_R = 2.32$
 - HD11415: $m_R = 3.4$
Coupling efficiency and limiting magnitude

- Limiting magnitude defined by flux in photometric channels
Coupling efficiency and limit magnitude

- $r_0 = 14 \text{ cm } @ \text{ 550 nm} \Rightarrow \rho_{\text{expected}} = 2.6\%$
- Measured flux and magnitude
 - $t_{\text{CHARA}} = 1.7\%$
 - $t_{\text{FRIEND+OCAM}} = 31.5\%$

$\Rightarrow \rho_{\text{estimated}} = 2.8\% \text{ with } no \text{ adaptive optics}$
Coupling efficiency and limiting magnitude

- Limiting mag defined by photometric channels
- For faint stars, flux at 0 or less
- Photometric sorting: \(P_i > n \sigma_{dark} \), \(n = 1.5 \)

\[\Rightarrow mag_{lim} = 4.1 \]

- \(\approx 20\sim25\% \) of frames

With:

\[\rho = 2.6\% \]

No AO
Instrumental visibility

• Optimization : OPD rejection method (low spectral resolution)
Instrumental visibility

2016-09-29

Squared visibilities - E2W2 / FRIEND 23 = Base 1

Squared visibilities - E1E2 / FRIEND 12 = Base 2

Squared visibilities - E1W2 / FRIEND 13 = Base 3

2016-09-30

Squared visibilities - W2W1 / FRIEND 23 = Base 1

Squared visibilities - E1W2 / FRIEND 12 = Base 2

Squared visibilities - E1W1 / FRIEND 13 = Base 3
Instrumental visibility

- Stability of Base 1 on 09-29
- Determination of V_{instr} stable with or without HD2905 (relative variation between fits < 1%)
- V_{instr} does not seem night-dependent

<table>
<thead>
<tr>
<th></th>
<th>09-29</th>
<th>09-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 1</td>
<td>0.72 ± 0.05</td>
<td>0.82 ± 0.12</td>
</tr>
<tr>
<td>Base 2</td>
<td>0.62 ± 0.05</td>
<td>0.63 ± 0.05</td>
</tr>
<tr>
<td>Base 3</td>
<td>0.83 ± 0.06</td>
<td>0.73 ± 0.27</td>
</tr>
</tbody>
</table>

Table 3: Estimation of V_{instr}^2 per base and per night.
Instrumental visibility

• Decrease on other bases: due to alignment drifts of pupils?
• Stability with respect to atmospheric condition:
 – No strong variation of the seeing during and between the nights
 – Systematic errors unseen?
 – Keep investigating
Closure phase

- Bispectrum: $B_{0,u,v} = B_{1,u,v} - \alpha \left(|C_u|^2 + |C_v|^2 + |C_{u,v}|^2 \right) + \beta N$

- $\alpha = \arg \min_{\alpha} \left(\text{Var} \left(B_g(B_{1,u,v}) \right) \right)$, $B_g =$ background

- Closure phase: $CP = \arctan \left(\frac{\Sigma \text{Im}}{\Sigma \text{Re}} \right)$

- $\sigma_\Sigma = \sqrt{N} \sigma_{bg}$, σ_{CP} determined by Monte-Carlo
Closure phase

2016-09-29

2016-09-30
Closure phase

• 2016-09-29: \(\text{slope} = -0.01 \pm 0.01 \)

• 2016-09-30: \(\text{slope} = 0.16 \pm 0.06 \) with 1 cal
 \(\text{slope} = 0.14 \pm 0.06 \) with 2 cal

\[\Rightarrow \text{Stability of } CP_{instr} \text{ with respect to the calibrators} \]

\[\Rightarrow \text{Investigating on possible instrumental effects} \]
Adaptive optics and injection

Observations
(with T.Ten Brummelaar, M. Anderson, J. Sturmann, L. Sturmann, C. Farrington, N. Vargas, VEGA team)

2017-03-08

- S2
- \(r_0 = 7 \text{ cm} \)
- Target: Sirius
- AO modes:
 - Labao
 - Open loop
 - Labao + own TT
 - Fast TT

2017-03-10

- S1S2
- \(r_0 = 8 \text{ cm} \)
- Target: Procyon
- AO modes:
 - Labao
 - Open loop
Adaptive optics and injection

2017-03-08

\[\langle \rho \rangle_{\text{open loop}} = 0.65\% \]

\[r_0 = 7 \text{ cm} \Rightarrow \rho_{th} = 0.65\% \]

\[\rho_{labao} = 0.76\% \Rightarrow \]

\[r_{0,eq} = 7.43 \text{ cm} \]

2017-03-10

\[r_0 = 8 \text{ cm} \Rightarrow \rho_{th} = 0.88\% \]

\[\langle \rho \rangle_{S2,\text{open loop}} = 0.58\% \]

\[\langle \rho \rangle_{S1,\text{open loop}} = 0.50\% \]
Conclusion and prospects

• Limiting magnitude: characterized and quantified
• Instrumental visibility:
 – Stable with respect to magnitude and night-dependent
 – Very sensitive to pupil drifts?
• Closure phase:
 – First measurements of CP quite accurate
 – Keep characterizing (magnitude, AO)
• AO and Injection:
 – AO improves a bit injection in FRIEND
 – Correlate FRIEND and AO data
• Martinod et al 2017 in prep.