

Long baseline interferometry in the visible: Recent progress on FRIEND project

Marc-Antoine Martinod

Denis Mourard, Karine Perraut, Philippe Berio, Jean-Michel Clausse, Anthony Meilland, and CHARA staff

CHARA Meeting – March 2016

bservatoire

Outline

- Short presentation of FRIEND prototype
- Coupling efficiency and limiting magnitude
- Instrumental visibility
- Closure phase
- Adaptive optics and injection

CHARA 2017: Year 13 Science Review – Adaptive Optics and Open Access

Short presentation of FRIEND prototype

Recombination module

 $<|V|^2>=\frac{< E_{HF}>}{\int_{\Lambda\lambda}\kappa(\lambda)\int_{\Lambda x}< P_1(\lambda,x)P_2(\lambda,x)>dxd\lambda}$

LESIA

Observations

2016-09-29

- E1E2W2
- $r_0 = 10 \text{ cm}$
- 1 Cal:
 - HD3360: mR = 3.74
- 1 Sci:
 - HD5394: mR = 2.32

2016-09-30

- E1W2W1
- r₀ = 14 cm
- 3 Cal:
 - HD3360: mR = 3.74
 - HD2905: mR = 4.02
 - HD3240: mV = 5.076
- 2 Sci:
 - HD5394: mR = 2.32
 - HD11415: mR = 3.4

Observatoire - LESIA

CHARA 2017: Year 13 Science Review – Adaptive Optics and Open Access

Coupling efficiency and limiting magnitude

 Limiting magnitude defined by flux in photometric channels

- CHARA 2017: Year 13 Science Review – Adaptive Optics and Open Access

Coupling efficiency and limit magnitude

- $r_0 = 14 \text{ cm} @ 550 \text{ nm} => \rho_{\text{expected}} = 2,6\%$
- Measured flux and magnitude
- t_{CHARA} = 1.7%
- $t_{\text{FRIEND+OCAM}} = 31.5\%$

=> p_{estimated} = 2.8% with no adaptive optics

CHARA 2017: Year 13 Science Review – Adaptive Optics and Open Access

Coupling efficiency and Imiting mag defined by photometric channels

- For faint stars, flux at 0 or less
- Photometric sorting: $P_i > n \sigma_{dark}$, n = 1,5

Instrumental visibility

 Optimization : OPD rejection method (low spectral resolution)

bservatoire

LESIA

Observatoire

Instrumental visibility 2016-09-29 2016-09-30

Observatoire

- Stability of Base 1 on 09-29
- Determination of V_{instr} stable with or without HD2905 (relative variation between fits < 1%)
- V_{instr} does not seem night-dependent

	09-29	09-30
Base 1	0.72 ± 0.05	0.82 ± 0.12
Base 2	0.62 ± 0.05	0.63 ± 0.05
Base 3	0.83 ± 0.06	0.73 ± 0.27

Table 3: Estimation of V_{instr}^2 per base and per night.

Instrumental visibility

- Decrease on other bases: due to alignment drifts of pupils ?
- Stability with respect to atmospheric condition:

bservatoire

- No strong variation of the seeing during and between the nights
- Systematic errors unseen ?
- Keep investigating

Closure phase

 $Re(B_0)$

- Bispectrum: $B_{0,u,v} = B_{1,u,v} \alpha \left(|C_u|^2 + |C_v|^2 + |C_{u,v}|^2 \right) + \beta N$
- $\alpha = \arg \min_{\alpha} \left(Var(Bg(B_{1,u,v})) \right)$, Bg=background Re(B₁) Re(B₀)

l'Observatoire – LESIA

• Closure phase: $CP = \arctan\left(\frac{\Sigma_{Im}}{\Sigma_{Re}}\right)$

Georgia State Unive

• $\sigma_{\Sigma} = \sqrt{N} \sigma_{bg}$, σ_{CP} determined by Monte-Carlo

Closure phase

- 2016-09-29: $slope = -0.01 \pm 0.01$
- 2016-09-30: $slope = 0.16 \pm 0.06$ with 1 cal $slope = 0.14 \pm 0.06$ with 2 cal => Stability of CP_{instr} with respect to the calibrators => Investigating on possible instrumental effects

Adaptive optics and injection Observations

(with T.Ten Brummelaar, M.Anderson, J.Sturmann, L.Sturmann, C.Farrington, N. Vargas, VEGA team)

2017-03-08

- S2
- $r_0 = 7 \text{ cm}$
- Target: Sirius
- AO modes:
 - Labao
 - Open loop
 - Labao + own TT
 - Fast TT

2017-03-10

- S1S2
- $r_0 = 8 \text{ cm}$
- Target: Procyon
- AO modes:
 - Labao
 - Open loop

Adaptive optics and injection

l'Observatoire - LESIA

2017-03-08

 $<\rho>_{open \ loop} = 0.65\%$ $r_0 = 7 \ cm \Rightarrow \rho_{th} = 0.65\%$ $\rho_{labao} = 0.76\% \Rightarrow$ $r_{0,eq} = 7.43 \ cm$

GeorgiaStateUniversity

2017-03-10

 $r_0=8\ cm \Rightarrow \rho_{th}=0.88\%$

$$<
ho>_{S2,open\ loop}=0.58\%$$

$$<
ho>_{S1,open\ loop}=0.50\%$$

Conclusion and prospects

- Limiting magnitude: characterized and quantified
- Instrumental visiblity:
 - Stable with respect to magnitude and night-dependent
 - Very sensitive to pupil drifts?
- Closure phase:
 - First measurements of CP quite accurate
 - Keep characterizing (magnitude, AO)
- AO and Injection:
 - AO improves a bit injection in FRIEND
 - Correlate FRIEND and AO data
- Martinod et al 2017 in prep.

