

SPICA: a new visible combiner for CHARA

Signed by many colleagues!

Observatoire

Summary of the previous seasons

- 2012: VEGA limitations (intensified CCD+multispeckle) + Prospect on CHARA/AO + Progresses on EMCCD → propositions P. Bério (FRIEND)
- 2013-2015: FRIEND development and tests
- 2015: first discussion at Atlanta
- 2016: Visible meeting after the CHARA Meeting

GeorgiaStateUniv

• 2016-2017: Definition of the SPICA proposal, funding request (5-year grant unsuccessful but local funding ok to start), project organization.

bservatoire

CHARA

Conclusions of Visible day (Nice, 2016)

- CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

Today's main points of conclusion?

- Science
 - Imaging/spectral-imaging
 - High-efficient θ machine
 - → <u>Sensitivity</u> (detector, AO, FT)
 - → Simple instrument with integrated pipeline, very few modes (2-3 maximum)
- Concept

GeorgiaStateUniversit

- Technology ready
- Bulk/IO: choice to be sensitivity-driven
- Multi-axial, dispersed fringes
- Interfaces (important for sensitivity and reliability)
 - Pupil and image trackers, LDC
 - AO and fiber injection
 - NIR for group-delay/fringe tracker: residuals versus magnitude/r0/dispersion...
- Control/operation/DRS
 - To be built on previous experience (see JMC talk) and CHARA integrated

Observatoire

More automatic processes towards final products

Stellar Parameters and Images with a Cophased Array

IF WE DON'T KNOW THE STAR, WE DON'T KNOW THE PLANETS

Exo earth Characterization Direct imaging From planets to planetary systems Planet and environment Multiscale approach Diversity Formation & evolution

Stars as Sun Star/planet Asteroseismology Surface imaging Improved modeling Habitability Diversity High angular resolution

Observatoire

SPICA science case

- Surface-brightness-color relations
- Masses
- Fundamental parameters as a function of SpTy
 - Radius
 - Effective Temperature
 - Limb darkening

White Book of P. Stee et al. 2015 50 co-authors, 134 pages

https://arxiv.org/abs/1703.02395

→ FROM EMPIRICAL MODELS TO MEASURES

- Exoplanets host stars
- Asteroseismic targets
- Original and unique support to a large panel of space missions (Gaia, TESS, CHEOPS, PLATO) and unique support for stellar masses and stellar evolutionary constraints

3 years * 70 nights = 1000 stars

- 1000 stars: 100* for spectral imaging, 200* binaries or multiple, 700* for FP
 - 5*100+10*200+2*700=3900 observations + calibrators → 8000 data points
 - 40 objects per night
- 2015: 187n, 4699obj →16obj/n. Factor 2.5 missing
- But
 - AO \rightarrow 75% of 'good seeing' conditions
 - 6T means 15V²
 - Low spectral resolution, improved number of channels, λ -coverage
- Probably feasible:
 - PAVO/FLUOR experience of fast shift
 - Queue scheduling and optimization

CHARA

SPICA: a first synthesis

- High-efficient θ /FP machine
 - → <u>Sensitivity</u> (detector, AO, FT), Efficiency (6T)
 - → Simple instrument with integrated pipeline
 - →R=100, 600-900nm
- Imaging/spectral-imaging
 B-3000 to preserve a good set
 - \Rightarrow R=3000 to preserve a good sensitivity
 - **→**6T
- R>30000 option for specific studies

A: a classical dispersed fringes (VEGA/MIRC/VISION) 6T B: a more prospective HR, wide band design with Echelle Spectrograph 3-6T C: a powerful Phase Tracker

Main points of attention

• Sensitivity

- AO-Fiber coupling and V² optimization
- Alignment control (pupil and image)
- Simple design; choice of components, lab implementation
- Bulk/IO choice
- Exposure time: Group Delay Phase tracking

• Efficiency

- Fight against downtime and overheads
- Instrument-Array interface optimization
- Automatic execution of OB + optimized night scheduling $\rightarrow f(\alpha, \delta)$
- 'integrated' pipeline

Two main drivers for performance

Detector

Nüvü512 ok for Mode A, 6T, low noise, fast readout

Nüvü1024 ok for Mode B, 3T, ~20 orders, R=30000 & $\Delta\lambda$ =200nm + Phase Tracker #1

IR detector for Phase Tracker (Selex?)

Phase Tracker

Group Delay is mandatory Phase Tracker #1: DIT=200ms, $\lambda/10$ (60nm) Phase Tracker #2: DIT=30s, $\lambda/4$ (150nm)

→Gravity like FT→ IR versus Visible

A: LR/MR with Group Delay B: HR C: Phase Tracker

Expected performance (1)

- Based on VEGA/CHARA + FRIEND experience
- S/N (V²) equation comes from Gordon&Busher 2012 (eq.28)
- Numerical hypothesis
 - Tinst=0.01; T-AO=0.8; SR=0.25; Coupling=0.2; Vinst=0.9
 - QE=0.9, RON=0.1, Ndark=0.0002 (NUVU)

bservatoire

Expected performance (2)

Limiting magnitude defined as S/N=10 per spectral channel in 10mn of integration

	R=100	R=3000
V ² =0.25	8.7	5.0
V ² =0.01	5.6	1.9

Table 1: Limiting magnitude with a group delay tracker only

	R=100	R=3000
V ² =0.25, DIT=0.2s	10.1	6.4
V ² =0.25, DIT=30s	11.4	7.7
V ² =0.01, DIT=0.2s	6.7	3.0
V ² =0.01, DIT=30s	8.0	4.3

Table 2: Limiting magnitude with a phase tracker

These estimations use the same S/N calculator of FRIEND, validated on-sky

Estimation of performance for a H-band CHARA FT

H band FT, 5 SpCh, 6T multiaxial, Selex detector. T0=10ms, Texp=5/10ms 100 000 10 000 1 0 0 0 100 10 -2 0 2 6 8 10 -4 4

Adaptation of MIRC? New system? TBD...

CHARA

GRAVITY State machine. © S. Lacour

LESIA

Observatoire

Instrumental principle of SPICA

Work breakdown (1)

1. Pre-studies on critical components

- 1. Nuvu qualification + software control
- 2. Evaluation of new actuators
- 3. LDC check : do we need them? new glass for improved transmission?

2. Studies on critical conceptual aspects

- 1. FRIEND fibers + OA injection : additional tip/tilt? Retro-lightening and direct co-alignment with CHARA?
- 2. Principles for photometry extraction: pupil slicers, flux slicers, see possibilities after the fiber exit.
- 3. Monitoring of seeing parameters : r0, t0

Work Breakdown (2)

3. Science requirements and performance evaluation

- 1. FRIEND S/N values + all FRIEND parameters : SPICA S/N calculations and performance evaluation
- 2. Decision on spectral resolutions
- 3. Definition of observing modes
- 4. SPICA large program science group organization

4. Fringe-tracking

- 1. Design of a H-band fringe tracker optimized in terms of transmission, number of spectral channels, detector and all parameters.
- 2. Continuation of performance evaluation

Work Breakdown (3)

5. Optical and mechanical implantation

- 1. Pupils position, OPD scheme
- 2. Optical design and implementation
- 3. List of optical pieces, list of mechanical pieces, list of motors and actuators
- 4. How to accommodate a high spectral resolution mode: number of beams, 2nd detector
- 5. Alignment procedure, operating procedure

6. Software architecture :

- 1. ICS FTS DCS OS
- 2. Data flow of acquisition and archiving : database L0
- 3. Data flow of DRS and RT-DRS : policy for L1 and L2
- 4. Specifications of RT-DRS
- 5. Specifications of quality check, database of quality check
- 6. Automatic pipeline
- 7. Operation software : queue observations, calibrator sequence

Short term activities

Continue to acquire experience with FRIEND prototype (especially AO/injection and piston)

Nuvu512 qualification/acquisition

System analysis \rightarrow specifications.

Implementation in the lab, general design of science light path and control systems

Funding mid-2017 ? → 1st light mid-2019 (A), 2020 (B+C)

bservatoire