«ALOHA at CHARA – L-band Prospects»

François Reynaud

XLIM / Dépt. Photonique IRO Limoges

L. Szemendera, L. L. Lehmann, L. Delage, L. Grossard,

Collaboration with the CHARA team : T. Brummelaar J. Strumann. N. Scott

The spectral issues : photon counting detectors and nonlinear crystal

pump laser (μm)			1,064		1,3		1,5		2	
Astro band (µm)										
н	1,50	1,80	0,62	0,67	0,70	0,75	0,75	0,82	0,86	0,95
К	2,00	2,50	0,69	0,75	0,79	0,86	0,86	0,94	1,00	1,11
L	3,20	3,90	0,80	0,84	0,92	0,98	1,02	1,08	1,23	1,32
Μ	4,50	5,00	0,86	0,88	1,01	1,03	1,13	1,15	1,38	1,43
N	8,00	13,00	0,94	0,98	1,12	1,18	1,26	1,34	1,60	1,73
Q	17,00	25,00	1,00	1,02	1,21	1,24	1,38	1,42	1,79	1,85

Ambient temperature photon counting detectors

PPLN	0.5-4.5 μm
OP GaAs	1-18 µm

Strategy of the ALOA project

Selection of:

- Available and reliable pump source
- Available and reliable crystal
- Commercial ambient detector

pump laser (µm)			1,064		1,3		
Astro band (µm)							
н	1,50	1,80	0,62	0,67	0,70	0,75	
к	2,00	2,50	0,69	0,75	0,79	0,86	
L	3,20	3,90	0,80	0,84	0,92	0,98	
. VI	4,50	5,00	0,86	0,88	1,01	1,03	
N	8,00	13,00	0,94	0,98	1,12	1,18	
Q	17,0	25,00	1,00	1,02	1,21	1,24	

Current test

H band >> 630 nm Pascaline Si APD detectors PPLN 1.06 μm laser diode as pump

L band >> 810 nm Ludovi Si APD detectors PPLN 1.06 µm laser diode as pump

Ludovic and Lucien

ALOHA strategy

EALOHA CHARA

ALOHA CHARA @1.55 µm on sky missions

« On-sky fringes with an up-conversion interferometer tested on a telescope array » P. DARRÉ, R. BAUDOIN, J. -T. GOMES, N. J. SCOTT, L. DELAGE, L. GROSSARD, J. STURMANN, C. FARRINGTON, F. REYNAUD and T. A. BRUMMELAAR , Phys. Rev. Lett. (IF : 7.9, 2016 6

In laboratory experiment :

- * Demonstration of the principle
- * Spectral behavior
- * Noise investigation
- * Photon counting regime
- * Blackbody source

In laboratory experiment : high flux results

* Source HeNe 3.39 µm
* mW range
* 98% contrast
* reliable

« In-lab ALOHA mid-infrared up-conversion interferometer with high fringe contrast @λ = 3.39 μm » L. SZEMENDERA, P. DARRÉ, R. BAUDOIN, L. GROSSARD, L. DELAGE, H. HERRMANN, C. SILBORHORN and F. REYNAUD Monthly Notices of the Royal Astronomical Society, vol. 457, no. 3, pp. 3115–3118, Apr. 2018

g

In laboratory experiment : photon counting regime

Current performances:

- * Fringes acquisition and contrast estimation
- * Very poor conversion efficiency 10⁻⁵ (old technology)
- * Estimated sensitivity 1m² tel >> Lmag = 0 *New components >> conversion eff x 100

"In-lab ALOHA mid infrared up-conversion interferometer in the photon counting regime @ λ =3.39µm", L. Szemendera, L. Grossard, L. Delage and F. Reynaud Submitted to MNRAS

Source HeNe 3.39 µm + attenuation 80-90 dB

In laboratory experiment : photon counting regime + black body

Current performances: * First fringes acquisition and 40% contrast estimation but

 -dissymmetry of the PPLN
 -Very poor conversion efficiency 10⁻⁵ (old technology)
 *New components under preliminary test >> conversion eff x 100

ALOHA @3.39 µm C2PU

Sensitivity tests on C2PU OCA/Calern

*the 1m telescope C2PU east

*Tip tilt

*Goal : scale the photometry between the lab and the sky *Mission planed in May *Collaboration JP Rivet F. Morand

General scheme

Telescope	Propagation	Delay Line	Beam combination
Dichroic Injection, raster	250 m PM 810 nm OPD stabilization	CHARA >>Fibre DL?	JOUFLU >>Specific table?

Telescope stage

*S1 S2 for the first tests *Tip tilt + AO + raster >> CHARA *Dichroic plate in the convergent beam of the AO

* Injection stage

* Reference source existing source but vis + NIR MIR ?

To be investigated with Laszlo and Theo

Fiber link

- Between S1 S2 and the lab
- First test with the OHANA fibers coming back from Mauna kea.
- inter config >>> opd fluctuation tests (in coupler + beam combiner
- = Mach Zehnder)
- Optical path stabilization ?
- Cable wrap influence
- How to lay the fibers?

Delay lines *use of the CHARA delay lines *Collimation and injection stage * Mechanical mounting on the DL rail * Beam diameter ? 'smaller than 5" rq: diam =1" >> Lf >> 100m !!!

Beam Combiner * In the lab close to the DL *Fully experimented in lab *All guided with fibers and coupler *OPD modulation by PZT * Si APD detector + data processing

Next mission 2017 Oct?

* Test of ALOHACHARA@1.55µm spectro config/ photometry....

*Fiber link test with the ALOHA 300 m fibers (internal source)

* Analysis and design of the MIR conversion stage on S1 and S2

«ALOHA at CHARA – L-band Prospects»

François Reynaud

XLIM / Dépt. Photonique IRO Limoges

L. Szemendera, L. L. Lehmann, L. Delage, L. Grossard,

Collaboration with the CHARA team : T. Brummelaar J. Strumann. N. Scott

